Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\frac{a}{b}\)=\(\frac{c}{d}\)\(\Rightarrow\)\(\frac{a}{c}\)=\(\frac{b}{d}\)
Đặt \(\frac{a}{c}\)=\(\frac{b}{d}\)=k (k\(\in\)Z)\(\Rightarrow\)\(\hept{\begin{cases}a=ck\\b=dk\end{cases}}\)
\(\Rightarrow\)\(\frac{a+b}{a-b}\)=\(\frac{ck+dk}{ck-dk}\)=\(\frac{k}{k}\).\(\frac{c+d}{c-d}\)=\(\frac{c+d}{c-d}\)
Vậy ta đã chứng minh được \(\frac{a+b}{a-b}\)=\(\frac{c+d}{c-d}\)
a) vì a/b= c/d nên ta có a/b=c/d=k suy ra a=kb ; c=kd ta co :a/a-b=kb/kb-b =kb/b.(k-1)=k/k-1 (1) ta có:c/c-d=kd/kd-d=kd/d.(k-1)=k/k-1 (2) Từ (1) và (2) suy ra a/a-b=c/c-d b) ta có:a+b/b=kb+b/b=b.(k+1) /b=k+1 (1) c+d/d=kd+d/d=d+(k+1)/d=k+1 (2) từ (1) và (2) suy ra a+b/b=c+d/d
ta có: a/b = c/d
=> a/c = b/d = (a+b)/(c+d) = (a-b)/(c-d)
=> (a+b)/(a-b) = (c+d)/(c-d) ( đpcm)
ta có: a/b = c/d
=> a/c = b/d = (a+b)/(c+d) = (a-b)/(c-d)
=> (a+b)/(a-b) = (c+d)/(c-d) ( đpcm)
#
Vì \(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}\)
Theo t/c dãy tỉ số=nhau:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(=>\frac{a+b}{a-b}=\frac{c+d}{c-d}\) (hoán vị trung tỉ)
Vậy.......
a) Cách 1: Từ điều kiện \(a,b,c,d\) khác nhau và \(a.d=b.c\)
ta suy ra \(a,b,c,d\ne0\) và \(\frac{a}{b}=\frac{c}{d}\left(1\right)\).
Cộng vào hai vế của (1) cùng số 1 ta được:
\(\frac{a}{b}+1=\frac{c}{d}+1\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}.\)
Cách 2: Theo tính chất của tỉ lệ thức, từ (1) suy ra:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{c+d}{d}=\frac{a+b}{b}.\)
b) Giải tương tự câu a) ta có:
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}-1=\frac{c}{d}-1=\frac{a-b}{c}=\frac{c-d}{d}.\)
Hoặc ta có theo tính chất của tỉ lệ thức
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}.\)
Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)
Ta có:
\(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\) (1)
\(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\) (2)
Từ (1) và (2) suy ra \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Đặt \(\frac{a}{b}+\frac{c}{d}=k\) (vì a khác b , c khác d )
suy ra a= bk , c=dk
Ta có : \(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b.\left(k+1\right)}{b.\left(k-1\right)}=\frac{k+1}{k-1}\)
\(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d.\left(k+1\right)}{d.\left(k-1\right)}=\frac{k+1}{k-1}\)
Từ (1) và (2) => \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)