Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ giả thiết \(c\ne0\) và ab, bc là các số có hai chữ số nên a, b, c > 0. Hoán vị các trung tỉ và áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{ab}{bc}=\frac{a+c}{b+c}=\frac{ab-\left(a+b\right)}{bc-\left(b+c\right)}=\frac{9a}{9b}=\frac{a}{b}=\frac{\left(a+b\right)-a}{\left(b+c\right)-b}=\frac{b}{c}\)
\(\Rightarrow\frac{ab}{b}=\frac{bc}{c}\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}\)
Ta có:
\(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}.\)
\(\Rightarrow\frac{10a+b}{a+b}=\frac{10b+c}{b+c}.\)
\(\Rightarrow\frac{a+b+9a}{a+b}=\frac{b+c+9b}{b+c}\)
\(\Rightarrow\frac{a+b}{a+b}+\frac{9a}{a+b}=\frac{b+c}{b+c}+\frac{9b}{b+c}\)
\(\Rightarrow1+\frac{9a}{a+b}=1+\frac{9b}{b+c}\)
\(\Rightarrow\frac{9a}{a+b}=\frac{9b}{b+c}.\)
\(\Rightarrow\frac{a}{a+b}=\frac{b}{b+c}\)
\(\Rightarrow a.\left(b+c\right)=b.\left(a+b\right)\)
\(\Rightarrow ab+ac=ab+b^2\)
\(\Rightarrow ac=b^2\)
\(\Rightarrow ac=b.b\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}\left(đpcm\right).\)
Chúc bạn học tốt!
Ta có:\(\frac{a}{b}\)=\(\frac{c}{d}\)\(\Rightarrow\)\(\frac{a}{c}\)=\(\frac{b}{d}\)
Đặt \(\frac{a}{c}\)=\(\frac{b}{d}\)=k (k\(\in\)Z)\(\Rightarrow\)\(\hept{\begin{cases}a=ck\\b=dk\end{cases}}\)
\(\Rightarrow\)\(\frac{a+b}{a-b}\)=\(\frac{ck+dk}{ck-dk}\)=\(\frac{k}{k}\).\(\frac{c+d}{c-d}\)=\(\frac{c+d}{c-d}\)
Vậy ta đã chứng minh được \(\frac{a+b}{a-b}\)=\(\frac{c+d}{c-d}\)
ta có: a/b = c/d
=> a/c = b/d = (a+b)/(c+d) = (a-b)/(c-d)
=> (a+b)/(a-b) = (c+d)/(c-d) ( đpcm)
ta có: a/b = c/d
=> a/c = b/d = (a+b)/(c+d) = (a-b)/(c-d)
=> (a+b)/(a-b) = (c+d)/(c-d) ( đpcm)
#
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{\left(a+b+c\right)-\left(a-b+c\right)}{\left(a+b-c\right)\left(a-b-c\right)}=\frac{2b}{2b}=1\)(do b khác 0)
\(\Rightarrow a+b+c=a+b-c\Rightarrow2c=0\Rightarrow c=0\)