Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
Áp dụng ............... ta có :
\(\frac{a+b}{c+d}=\frac{a}{c}=\frac{b}{d}=K\)
\(\frac{a-b}{c-d}=\frac{a}{c}=\frac{b}{d}=K\)
\(DoK=K\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)( đúng )
\(\frac{a}{b}=\frac{b}{c}\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2=\frac{ab}{bc}\)
\(=\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{ab}{bc}=\frac{a}{c}=\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+b^2}{b^2+c^2}\)
Vậy \(\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\) (dpcm)
vì a,b,c tỉ lệ nghịch với 1/2;1/5;1/7 nên a/2=b/5=c/7. Hay a/2=b/5=2c/14
ADTCCDTSBN TA CÓ
a/2=b/5=2c/14=a+b-2c/2+5-14=70/-7=-10
Suy ra a/2=-10 nên a=-20
b/5=-10 nên b=-50
2c/14=-10 nên c=-70
Biết 3 số a,b,c chúng tỉ lệ nghịch với 1/2 ; 1/5 ; 1/7
=> a/2 = b/5 = c/7
=> a/2 = b/5 = -2c/-14
Áp dụng tc dãy tỉ số = nhau ta đc :
a/2 = b/5 = -2c/-14 = (a+b-2c)/(2+5-14) = 70/-7 = -10
=>a= -20 ; b= -50 ; c = -70
=> a+b-c = 0
\(\frac{\overline{ab}}{\overline{bc}}=\frac{b}{c}=\frac{10a+b}{10b+c}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{\overline{ab}}{\overline{bc}}=\frac{b}{c}=\frac{10a+b}{10b+c}=\frac{10a+b-b}{10b+c-c}=\frac{10a}{10b}=\frac{a}{b}\)
\(\Rightarrow\frac{b}{c}=\frac{a}{b}\Rightarrow b^2=ac\)
\(\frac{a^2+b^2}{b^2+c^2}=\frac{a^2+ac}{ac+c^2}=\frac{a\left(a+c\right)}{c\left(a+c\right)}=\frac{a}{c}\)
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=1\)
\(\Rightarrow\)\(a+b+c=a+b-c\)\(\Leftrightarrow\)\(c=0\)
\(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}\)
\(\Leftrightarrow\frac{10a+b}{a+b}=\frac{10b+c}{b+c}\)
\(\Leftrightarrow\frac{a+b+9a}{a+b}=\frac{b+c+9b}{b+c}\)
\(\Leftrightarrow1+\frac{9a}{a+b}=1+\frac{9b}{b+c}\)
\(\Leftrightarrow\frac{9a}{a+b}=\frac{9b}{b+c}\)
\(\Leftrightarrow\frac{a}{a+b}=\frac{b}{b+c}\)
\(\Leftrightarrow a\left(b+c\right)=b\left(a+b\right)\)
\(\Leftrightarrow ab+ac=ab+b^2\)
\(\Leftrightarrow ac=b^2\)
\(\Leftrightarrow\frac{a}{b}=\frac{b}{c}\)
Ta có:
\(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}\Rightarrow\frac{\overline{ab}}{\overline{bc}}=\frac{a+b}{b+c}=\frac{\overline{ab}-\left(a+b\right)}{\overline{bc}-\left(b+c\right)}\)
\(=\frac{10a+b-a-b}{10b+c-b-c}=\frac{9a}{9b}=\frac{b}{a}\)
\(\frac{a+b}{b+c}=\frac{a}{b}=\frac{a+b-a}{b+c-b}=\frac{b}{c}\)
Vậy: \(\frac{a}{b}=\frac{b}{c}\left(b,c\ne0\right)\)
Bn ơi mk nghĩ đề phải là : giả thuyết \(c\ne0\)bn nhé.......
#kiseki no enzeru#
hok tốt