Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{a+b}{b+c}=\frac{c+d}{d+a}.\)
\(\Rightarrow\frac{a+b}{c+d}=\frac{b+c}{d+a}.\)
\(\Rightarrow\frac{a+b}{c+d}+1=\frac{b+c}{d+a}+1\)
\(\Rightarrow\frac{a+b}{c+d}+\frac{c+d}{c+d}=\frac{b+c}{d+a}+\frac{d+a}{d+a}.\)
\(\Rightarrow\frac{a+b+c+d}{c+d}=\frac{b+c+d+a}{d+a}\)
+ Nếu \(a+b+c+d\ne0\)
\(\Rightarrow c+d=d+a\)
\(\Rightarrow c=a\left(đpcm1\right).\)
+ Nếu \(a+b+c+d=0\)
\(\Rightarrow\) hợp với đề.
\(\Rightarrow a+b+c+d=0\left(đpcm2\right).\)
Chúc bạn học tốt!
\(\frac{a+b}{b+c}=\frac{c+d}{d+a}\Rightarrow\left(a+b\right)\left(d+a\right)=\left(b+c\right)\left(c+d\right)\)
<=> ad + a2 + bd + ab = bc + bd + c2 + cd
<=> ad + a2 + bd + ab - bc - bd - c2 - cd = 0
<=> ad + a2 + ab - bc - c2 - cd = 0
<=> ( ad - cd ) + ( a2 - c2 ) + ( ab - bc ) = 0
<=> d( a - c ) + ( a - c )( a + c ) + b( a - c ) = 0
<=> ( a - c )( a + b + c + d ) = 0
<=> \(\orbr{\begin{cases}a-c=0\\a+b+c+d=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}a=c\\a+b+c+d=0\end{cases}\left(đpcm\right)}\)
\(\frac{a+b}{b+c}=\frac{c+d}{d+a}=\frac{a+b+c+d}{a+b+c+d}\)
TH1: \(a+b+c+d=0\Rightarrowđpcm\)
TH2: \(a+b+c+d\ne0\Rightarrow\frac{a+b}{b+c}=\frac{c+d}{d+a}=1\)
\(\Rightarrow a+b=b+c\)
\(\Rightarrow a=c\left(đpcm\right)\)
Ta có \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b-c}{b+c-d}\)(dãy tỉ số bằng nhau)
=> \(\left(\frac{a}{b}\right)^3=\left(\frac{b}{c}\right)^3=\left(\frac{c}{d}\right)^3=\left(\frac{a+b-c}{b+c-d}\right)^3\)
=> \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\left(\frac{a+b-c}{b+c-d}\right)^3\)
=> \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\left(\frac{a+b-c}{b+c-d}\right)^3\)(dãy tỉ số bằng nhau)
=> \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\left(\frac{a+b-c}{b+c-d}\right)^3\)(đpcm)
vì a+b/b+c = c+d/d+a nên
(a+b).(d+a) =(c+d).(b+c)
ad+bd+bd+ab=cb+db+db+dc
ad+ab=cb+dc ( 2 vế cùng bớt đi db+db)
a.(d+b)=c.(b+d)
=> a=c
vì a+b/b+c = c+d/d+a nên
(a+b).(d+a) =(c+d).(b+c)
ad+bd+bd+ab=cb+db+db+dc
ad+ab=cb+dc ( 2 vế cùng bớt đi db+db)
a.(d+b)=c.(b+d)
=> a=c
Sử dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-\left(a-b+c\right)}{a+b-c-\left(a-b-c\right)}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\)
=>\(\frac{a+b+c}{a+b-c}=1\)
=>a+b+c=a+b-c
=>c+c=a+b-a-b
=>2c=0
=>c=0
Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk,c=dk\)
Ta có: \(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\) (1)
\(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\) (2)
Từ (1) và (2) suy ra \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\Leftrightarrow\left(a+b+c\right).\left(a-b-c\right)=\left(a+b-c\right).\left(a-b+c\right)\)
\(\Leftrightarrow-c^2-2bc-b^2+a^2=-c^2+2bc-b^2+a^2\)
\(\Leftrightarrow-2bc=2bc\Rightarrow-bc=bc\Rightarrow\orbr{\begin{cases}b=0\\c=0\end{cases}}\)
=> đpcm
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\)
\(\Rightarrow\left(a+b+c\right)\left(a-b-c\right)=\left(a+b-c\right)\left(a-b+c\right)\)
\(\Rightarrow\left[a+\left(b+c\right)\right]\left[a-\left(b+c\right)\right]=\left[a+\left(b-c\right)\right]\left[a-\left(b-c\right)\right]\)
\(\Rightarrow a^2-\left(b+c\right)^2=a^2-\left(b-c\right)^2\)
\(\Rightarrow\left(b+c\right)^2=\left(b-c\right)^2\Rightarrow b^2+2bc+c^2=b^2-2bc+c^2\)
\(\Rightarrow2bc=-2bc\Rightarrow2bc+2bc=0\Rightarrow4bc=0\Rightarrow\orbr{\begin{cases}b=0\\c=0\end{cases}}\)