\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\).CMR:
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2017

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}=\dfrac{a+b}{c+d}\)

=> (a+b)(c-d) = (c+d)(a-b)

=> \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)

31 tháng 10 2017

Cách 1 :

Ta có: (a+b)(c-d)=ac-ad+bc-bd (1)

(a-b)(c+d)=ac+ad-bc-bd (2)

Từ giả thiết: \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=> ad=bc (3)

Từ (1),(2),(3)=> (a+b)(c-d)=(a-b)(c+d)=>\(\dfrac{a+b}{a-b}\)=\(\dfrac{c+d}{c-d}\)

C2:

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k=>a=bk,c=dk\)

Ta có: \(\dfrac{a+b}{a-b}=\dfrac{kb+b}{kb-b}=\dfrac{b\left(k+1\right)}{b\left(k-1\right)}=\dfrac{k+1}{k-1}\) (1)

\(\dfrac{c+d}{c-d}=\dfrac{kd+d}{kd-d}=\dfrac{d\left(k+1\right)}{d\left(k-1\right)}=\dfrac{k+1}{k-1}\) (2)

Từ (1) và (2) =>: \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)

C3:

Từ giả thiết: \(\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{a}{c}=\dfrac{b}{d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}=>\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)

Bài 2: 

Đặt a/b=c/d=k

=>a=bk; c=dk

a: \(\dfrac{a}{a+b}=\dfrac{bk}{bk+b}=\dfrac{k}{k+1}\)

\(\dfrac{c}{c+d}=\dfrac{dk}{dk+d}=\dfrac{k}{k+1}\)

Do đó: \(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)

b: \(\dfrac{7a^2+5ac}{7a^2-5ac}=\dfrac{7\cdot b^2k^2+5\cdot bk\cdot dk}{7\cdot b^2k^2-5\cdot bk\cdot dk}\)

\(=\dfrac{7b^2k^2+5bdk^2}{7b^2k^2-5bdk^2}=\dfrac{7b^2+5bd}{7b^2-5bd}\)(đpcm)

16 tháng 7 2018

a.Vì \(\dfrac{a}{b}=\dfrac{c}{d}\)

=>\(\dfrac{a}{b}-1=\dfrac{c}{d}-1\)

=>\(\dfrac{a-b}{b}=\dfrac{c-d}{d}\)(đpcm)

b.Vì\(\dfrac{a}{b}=\dfrac{c}{d}\)

=>\(\dfrac{a}{c}=\dfrac{b}{d}\)

=>\(\dfrac{a}{c}-1=\dfrac{b}{d}-1\)

=>\(\dfrac{a-c}{c}=\dfrac{b-d}{d}\)(đpcm)

28 tháng 10 2017

a)\(\dfrac{a-b}{b}\) = \(\dfrac{c-d}{d}\)

\(\dfrac{a}{b}\) = \(\dfrac{c}{d}\)

=>\(\dfrac{a}{b}\) -1= \(\dfrac{c}{d}\) -1

=> \(\dfrac{a}{b}\) - \(\dfrac{b}{b}\) = \(\dfrac{c}{d}\) - \(\dfrac{d}{d}\)

=> \(\dfrac{a-b}{b}\) = \(\dfrac{c-d}{d}\)

12 tháng 6 2017

Giải:

Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)

\(\Rightarrow\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\left(đpcm\right)\)

Vậy...

12 tháng 6 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

=>\(\left\{{}\begin{matrix}a=b.k\\c=d.k\end{matrix}\right.\) (1)

Thay (1) vào:

\(\dfrac{a+b}{a-b}=\dfrac{b.k+b}{b.k-b}=\dfrac{b.\left(k+1\right)}{b.\left(k-1\right)}=\dfrac{k+1}{k-1}\) (2)

\(\dfrac{c+d}{c-d}=\dfrac{d.k+d}{d.k-d}=\dfrac{d.\left(k+1\right)}{d.\left(k-1\right)}=\dfrac{k+1}{k-1}\) (3)

Từ (2) và (3) =>\(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}=\dfrac{k+1}{k-1}\)

\(\dfrac{a+b}{c+d}=\dfrac{a-2b}{c-2d}\Rightarrow\left(a+b\right)\left(c-2d\right)=\left(c+d\right)\left(a-2b\right)\\ ac+bc-2ad-2bd=ac+ad-2bc-2bd\\ bc-2ad=ad-2bc\\ 3bc=3ad\\ bc=ad\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\left(đpcm\right)\)

12 tháng 7 2017

\(\dfrac{a+b}{c+d}=\dfrac{a-2b}{c-2d}\)

\(\Leftrightarrow\left(a+b\right)\left(c-2d\right)=\left(c+d\right)\left(a-2b\right)\)

\(\Leftrightarrow ac-2ad+bc-2bd=ac-2bc+ad-2bd\)

\(\Leftrightarrow2ad+ad=2bc+bc\)

\(\Leftrightarrow3ad=3bc\)

\(\Leftrightarrow ad=bc\rightarrowđpcm\)

23 tháng 11 2017

*a/b=c/d=k=>a=bk;c=dk

Thay a=bk vào 2a+3b/2a-3b=2bk+3b/2bk-3b=2k+3/2k-3

Tương tự thay c=dk vào 2c+3d/2c-3d=2dk+3d/2dk-3d=2k+3/2k-3

=>2a+3b/2a-3b=2c+3d/2c-3d

*a/b=c/d=>a/c=b/d=k

=>k^2=a^2/c^2=c^2/d^2=a^2-b^2/c^2-d^2 (1)

k^2=a/c.b/d=ab/cd (2)

Từ (1) và (2)=>ab/cd=a^2-b^2/c^2-d^2

*a/b=c/d=>a/c=b/d=k=a+b/c+d

=>k^2=(a+b/c+d)^2

k^2=a^2/c^2=b^2/d^2=a^2+b^2/c^2+d^2

=>(a+b/c+d)^2=a^2+b^2/c^2+d^2

28 tháng 3 2018

Gọi \(\dfrac{a}{b}=\dfrac{c}{d}=k\).\(\Rightarrow a=bk,c=dk\)

a)Ta có:\(\dfrac{2a+3b}{2a-3b}=\dfrac{2bk+3b}{2bk-3b}=\dfrac{b\left(2k+3\right)}{b\left(2k-3\right)}=\dfrac{2k+3}{2k-3}\)(1)

\(\dfrac{2c+3d}{2c-3d}=\dfrac{2dk+3d}{2dk-3d}=\dfrac{d\left(2k+3\right)}{d\left(2k-3\right)}\dfrac{2k+3}{2k-3}\)(2)

Từ (1),(2)ta có:\(\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3d}\)

b)Ta có:\(\dfrac{ab}{cd}=\dfrac{bk\times b}{dk\times d}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2}\)(1)

\(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{\left(bk\right)^2-b^2}{\left(dk\right)^2-d^2}=\dfrac{b^2k^2-b^2}{d^2k^2-d^2}=\dfrac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\dfrac{b^2}{d^2}\)(2)

Từ (1),(2) ta có:\(\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\)

c)Ta có:\(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bk+b}{dk+d}\right)^2=\left(\dfrac{b}{d}\right)^2=\dfrac{b^2}{d^2}\)(1)

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\dfrac{b^2}{d^2}\)(2)

Từ (1), (2) ta có \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)

21 tháng 11 2017

Cách 1 :

Từ a/b = c/d => a/c = b/d ( tính chất tỉ lệ thức )

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

a/c = b/d = a+b/a-b = a-b/c-d => a+b/a-b = c+d/c-d ( tính chất tỉ lệ thức )

Vậy a+b/a-b = c+d/c-d

Cách 2:

Đặt : a/b = c/d = k

a/b = k => a= bk

c/d = k => c=dk

a+b/a-b = bk+b/ bk-b = b(k+1)/b(k-1) = k+1/k-1. (1)

c+d/c-d = dk+d/dk-d = d(k+1)/d(k-1) + k+1/k-1. (2)

Từ (1) và (2) suy ra a+b/a-b = c+d/c-d.

21 tháng 11 2017

Ta có:\(\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)

\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)

\(=\dfrac{c+d}{a+b}=\dfrac{c-d}{a-b}\)

\(\Rightarrow\dfrac{a-b}{a+b}=\dfrac{c-d}{c+d}\left(dpcm\right)\)

3 tháng 1 2018

\(\dfrac{a}{b}=\dfrac{c}{d}\\ \Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\\ \Rightarrow\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2-b^2}{c^2-d^2}\\ \dfrac{a^2}{c^2}=\dfrac{a}{c}.\dfrac{a}{c}=\dfrac{a}{c}.\dfrac{b}{d}=\dfrac{ab}{cd}\\ \Rightarrow\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\)

4 tháng 1 2018

Có thể dùng cách khác:v

a)\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}=t\)(với t là 1 số thực bất kì thỏa mãn)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{c}.\dfrac{b}{d}=\dfrac{ab}{cd}=t^2\\\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2-b^2}{c^2-d^2}=t^2\end{matrix}\right.\Rightarrowđpcm\)

Tương tự:v

31 tháng 5 2017

Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

Lần lượt thay a và c vào các ý cần chứng minh, áp dụng theo tính chất phân phối giữa phép nhân đối với phép cộng (hay phép trừ) để tính ở mỗi vế.

Mẫu: a) Ta có : \(\dfrac{a+b}{b}=\dfrac{bk+b}{b}=\dfrac{b\left(k+1\right)}{b}=k+1\)

\(\dfrac{c+d}{d}=\dfrac{dk+d}{d}=\dfrac{d\left(k+1\right)}{d}=k+1\)

\(\Rightarrow\dfrac{a+b}{b}=\dfrac{c+d}{d}\)

Vậy \(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)

13 tháng 8 2017

a)\(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)

Gọi\(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(a=b.k\)

\(c=d.k\)

\(\dfrac{a+b}{b}=\dfrac{bk+b}{b}=\dfrac{b.\left(k+1\right)}{b}=k+1\) (1)

\(\dfrac{c+d}{d}=\dfrac{dk+d}{d}=\dfrac{d.\left(k+1\right)}{d}=k+1\)(2)

Từ (1) và (2) \(\Rightarrow\)\(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)

b)\(\dfrac{a-b}{b}=\dfrac{c-d}{d}\)

Gọi\(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(a=b.k\)

\(c=d.k\)\(\dfrac{a-b}{a}=1-\dfrac{b}{a}=1-\dfrac{b}{bk}=1-\dfrac{1}{k}\left(1\right)\)

\(\dfrac{c-d}{c}=1-\dfrac{d}{c}=1-\dfrac{d}{dk}=1-\dfrac{1}{k}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\)\(\dfrac{a-b}{b}=\dfrac{c-d}{d}\)

1 tháng 11 2017

a) \(\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Rightarrow\dfrac{b}{a}=\dfrac{d}{c}\)

\(\Rightarrow1+\dfrac{b}{a}=1+\dfrac{d}{c}\)

\(\Rightarrow\dfrac{a+b}{a}=\dfrac{c+d}{c}\)

\(\RightarrowĐPCM\)

1 tháng 11 2017

b) Tương tự