Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta co: ab/bc=b/c => a/c=b/c => a=b
Xet dang thuc ac=b2 ta co: ac=b2
thay a=b vao dang thuc tren ta duoc: b.c=b2 hay b.c=b.b => c=b
Ma b=a nen suy ra c=b=a
Vi a=b ; c=b nen suy ra ac=b2 (dpcm)
Có : ab/bc = b/c ( ab và bc có gạch ngang trên đầu )
=> 10a+b/10b+c = b/c
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
10a+b/10b+c=b/c=10a+b-b/10b+c-c = 10a/10b = a/b
=> b/c=a/b => b^2 = ac
=> ĐPCM
k mk nha
tc:ab/bc=b/c
10a+b/10b+c=b/c
ap dung tinh chat day ti so bang nhau to co
10a+b/10b+c=b/c=10a+b-b/10b+c-c=10a/10b=a/b
suy rab/c=a/b
suy ra b^2=ac
Đề \(\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}\)\(\Leftrightarrow\frac{a}{ab}+\frac{b}{ab}=\frac{b}{bc}+\frac{c}{bc}\)\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}\)
\(\Leftrightarrow\frac{1}{a}=\frac{1}{c}\Rightarrow a=c\Leftrightarrow ab=bc\)
\(\Rightarrow\frac{a}{b}=\frac{c}{b}\)
Đề sai hả bạn ?
2) Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{ab}{b}=\frac{bc}{c}=\frac{ca}{a}=\frac{ab+bc+ca}{b+c+a}=\frac{\left(10a+b\right)+\left(10b+c\right)+\left(10c+a\right)}{a+b+c}=\frac{11.\left(a+b+c\right)}{a+b+c}=11\)
\(\Rightarrow\begin{cases}ab=11b\\bc=11c\\ca=11a\end{cases}\)\(\Rightarrow\begin{cases}10a+b=11b\\10b+c=11c\\10c+a=11a\end{cases}\)\(\Rightarrow\begin{cases}10a=10b\\10b=10c\\10c=10a\end{cases}\)\(\Rightarrow10a=10b=10c\)
=> a = b = c (đpcm)
soyeon_Tiểubàng giải bạn giúp bn ấy ik trong đó có câu 2 mk cần ó
Ta có : \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
\(\Leftrightarrow\left(a^2+b^2\right)cd=ab\left(c^2+d^2\right)\)
\(\Leftrightarrow a^2cd+b^2cd=abc^2+abd^2\)
\(\Leftrightarrow\left(a^2cd-abd^2\right)+\left(b^2cd-abc^2\right)=0\)
\(\Leftrightarrow ad\left(ac-bd\right)-bc\left(ac-bd\right)=0\)
\(\Leftrightarrow\left(ac-bd\right)\left(ad-bc\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}ac=bd\\ad=bc\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{a}{b}=\frac{c}{d}\\\frac{a}{b}=\frac{d}{c}\end{cases}}\) (đpcm)
Ta có: \(\frac{a}{b}\frac{b}{c}=\frac{b}{c}\)
\(\Rightarrow\frac{10}{a+b}+10b+c=\frac{b}{c}\)
Áp dụng tính chất dãy số bằng nhau ta có:
\(10a+\frac{b}{10b+c}=\frac{b}{c}=10a+b-\frac{b}{10b+c-c}=\frac{10a}{10b}=\frac{a}{b}\)
\(\frac{\Rightarrow b}{c}=\frac{a}{b}\Rightarrow ac=b^2\)
đpcm.