Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{ab}{cd}=\frac{bk.b}{dk.b}=\frac{b^2}{d^2}\left(1\right)\)
\(\frac{a^2-b^2}{c^2-d^2}=\frac{b^2k^2-b^2}{d^2k^2-d^2}=\frac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\frac{b^2}{d^2}\left(2\right)\)
từ\(\left(1\right)\)và\(\left(2\right)\)\(\Rightarrow\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\) thì \(a=bk,c=dk\).
\(\frac{2a+3b}{2a-3b}=\frac{2bk+3b}{2bk-3b}=\frac{b\left(2k+3\right)}{b\left(2k-3\right)}=\frac{2k+3}{2k-3}\\ \frac{2c+3d}{2c-3d}=\frac{2dk+3d}{2dk-3d}=\frac{d\left(2k+3\right)}{d\left(2k-3\right)}=\frac{2k+3}{2k-3}\)
Do đó: \(\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)
https://bingbe.com/search?category=question&q=Cho%20t%E1%BB%89%20l%E1%BB%87%20th%E1%BB%A9c%20a%20%2Fb%20%3D%20c%20%2Fd%20.%C2%A0Ch%E1%BB%A9ng%20minh%20c%C3%B3%20t%E1%BB%89%20l%E1%BB%87%20th%E1%BB%A9c%20sau%20%3A%0A%0A(%20a%20%2B%20c%C2%A0)2%C2%A0%2F%20(%20b%20%2B%20d%20)2%C2%A0%3D%20a2%C2%A0%20%2B%C2%A0%C2%A0c2%C2%A0%2F%20b2%20%C2%A0%2B%20d%C2%A02%C2%A0%0A%0A(%20Gi%E1%BA%A3%20thi%E1%BA%BFt%20c%C3%A1c%20t%E1%BB%89%20s%E1%BB%91%20%C4%91%E1%BB%81u%20c%C3%B3%20ngh%C4%A9a%20)%C2%A0%0A%0A%C2%A0
Xem ở lick này nhé (mình gửi cho)
Học tốt!!!!!!!!!!!!!
Ta có:
\(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
a) \(\frac{2a+3b}{2a-3b}=\frac{2bk+3b}{2bk-3b}=\frac{b\left(2k+3\right)}{b\left(2k-3\right)}=\frac{2k+3}{2k-3}\left(1\right)\)
\(\frac{2c+3d}{2c-3d}=\frac{2dk+3d}{2dk-3d}=\frac{d\left(2k+3\right)}{d\left(2k-3\right)}=\frac{2k+3}{2k-3}\left(2\right)\)
Từ (1) , (2) \(\Rightarrow\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)
b) \(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\left(1\right)\)
\(\frac{a^2-b^2}{c^2-d^2}=\frac{b^2k^2-b^2}{d^2k^2-d^2}=\frac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\frac{b^2}{d^2}\left(2\right)\)
Từ (1) , (2) \(\Rightarrow\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
c) \(\left(\frac{a+b}{c+d}\right)^2=\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\frac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\frac{b^2.\left(k+1\right)^2}{d^2\left(k+1\right)^2}=\frac{b^2}{d^2}\left(1\right)\)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{b^2k^2+b^2}{d^2k^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2\right)+1}=\frac{b^2}{d^2}\left(2\right)\)
Từ (1) , (2) \(\Rightarrow\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
c) có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a^2}{^{c^2}}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\left(1\right)\)
Lại có: \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\left(2\right)\)
Từ (1) và (2) có \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2+b^2}{c^2+d^2}\left(đpcm\right)\)
các câu còn lại bạn tự làm đi! HI.......
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
a)\(\frac{2a+3b}{2a-3b}=\frac{2bk+3b}{2bk-3b}=\frac{b\left(2k+3\right)}{b\left(2k-3\right)}=\frac{2k+3}{2k-3}\)(1)
\(\frac{2c+3d}{2c-3d}=\frac{2dk+3d}{2dk-3d}=\frac{d\left(2k+3\right)}{d\left(2k-3\right)}=\frac{2k+3}{2k-3}\)(2)
Từ (1) và (2) \(\Rightarrow\)\(\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)
b)\(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)(1)
\(\frac{a^2-b^2}{c^2-d^2}=\frac{b^2.k^2-b^2}{d^2.k^2-d^2}=\frac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\frac{b^2}{d^2}\)(2)
Từ (1) và(2)\(\Rightarrow\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
c)\(\left(\frac{a+b}{c+d}\right)^2=\frac{\left(bk+b\right)^2}{\left(ck+d\right)^2}=\frac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\frac{b^2}{d^2}\)(1)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\)(2)
Từ (1) và(2)\(\Rightarrow\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
k cho mình nhé
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2=\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2-c^2}{b^2-d^2}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2=\frac{a}{b}\cdot\frac{a}{b}=\frac{a}{b}\cdot\frac{c}{d}=\frac{ac}{bd}\)
\(\Rightarrow\frac{ac}{bd}=\frac{a^2-c^2}{b^2-d^2}\)
Vậy ...
Giải : Đặt \(\frac{a}{b}=\frac{c}{d}=k\)=> \(\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Khi đó, ta có : \(\frac{bk.dk}{bd}=\frac{bdk^2}{bd}=k^2\)(1)
\(\frac{\left(bk\right)^2-\left(dk\right)^2}{b^2-d^2}=\frac{b^2.k^2-d^2.k^2}{b^2-d^2}=\frac{\left(b^2-d^2\right).k^2}{b^2-d^2}=k^2\)(2)
Từ (1) và (2) suy ra : \(\frac{ac}{bd}=\frac{a^2-c^2}{b^2-d^2}\)
Lời giải
Ta có: \(\frac{a}{b}=\frac{b}{c}\Rightarrow\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a.b}{b.c}=\frac{a}{c}\) (1)
Mặt khác,áp dụng t/c tỉ dãy số bằng nhau,ta có:\(\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a^2+b^2}{b^2+c^2}\) (2)
Từ (1) và (2) ta có đpcm (điều phải chứng minh)
tth, Cảm ơn bạn nhìu!