K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABD và ΔACD có

AB=AC

góc BAD=góc CAD

AD chung

=>ΔABD=ΔACD

b: ΔABD=ΔACD

=>DB=DC

=>D là trung điểm của BC

c: ΔABC cân tại A

mà AD là trung tuyến

nên AD vuông góc BC

d: Xét ΔAED vuông tại E và ΔAFD vuông tại F có

AD chung

góc EAD=góc FAD

=>ΔAED=ΔAFD

=>AE=AF và DE=DF

e: Xét ΔABC có AE/AB=AF/AC

nên EF//BC

a) Xét ΔABD vuông tại D và ΔACD vuông tại D có 

AB=AC(ΔABC cân tại A)

AD chung

Do đó: ΔABD=ΔACD(cạnh huyền-cạnh góc vuông)

Suy ra: DB=DC(hai cạnh tương ứng)

a) Xét ΔADB vuông tại D và ΔADC vuông tại D có 

AB=AC(ΔABC cân tại A)

AD chung

Do đó: ΔADB=ΔADC(cạnh huyền-cạnh góc vuông)

Suy ra: DB=DC(Hai cạnh tương ứng)

b) Ta có: ΔADB=ΔADC(cmt)

nên \(\widehat{BAD}=\widehat{CAD}\)(hai góc tương ứng)

hay \(\widehat{EAD}=\widehat{FAD}\)

Xét ΔEAD vuông tại E và ΔFAD vuông tại F có 

AD chung

\(\widehat{EAD}=\widehat{FAD}\)(cmt)

Do đó: ΔEAD=ΔFAD(cạnh huyền-góc nhọn)

Suy ra: AE=AF(Hai cạnh tương ứng)

Xét ΔAEF có AE=AF(cmt)

nên ΔAEF cân tại A(Định nghĩa tam giác cân)

a: Xét ΔADB và ΔADC có

AB=AC
góc BAD=góc CAD

AD chung

=>ΔADB=ΔADC

b: Xét ΔAED vuông tại E và ΔAFD vuông tại F có

AD chung

góc EAD=góc FAD

=>ΔAED=ΔAFD
=>AE=AF và DE=DF

c: Xét ΔABC có AE/AB=AF/AC

nên EF//BC

9 tháng 2 2022

a. Xét tam giác  ABD và tam giác ACD

AB = AC ( ABC cân )

góc B = góc C ( ABC cân )

AD : cạnh chung

Vậy tam giác  ABD = tam giác ACD ( c.g.c )

b. ta có trong tam giác ABC đường trung tuyến cũng là đường cao

=> AD vuông BC

CD = BC : 2 = 12 : 2 =6cm

c.áp dụng định lý pitago vào tam giác vuông ADC 

\(AC^2=AD^2+DC^2\)

\(AD=\sqrt{10^2-6^2}=\sqrt{64}=8cm\)

d.Xét tam giác vuông BDE và tam giác vuông CDF có:

AD = CD ( gt )

góc B = góc C

Vậy tam giác vuông BDE = tam giác vuông CDF ( cạnh huyền . góc nhọn)

=> DE = DF ( 2 cạnh tương ứng )

=> tam giác DEF cân tại D

9 tháng 2 2022

a) Tam giác ABD và tam giác ACD có:

     BD = CD (Vì D là trung điểm của BC)

     góc B = góc C

                              (vì tam giác ABC cân tại A)

     AB = AC

  Do đó: am giác ABD = tam giác ACD (c.g.c)

   Suy ra: Góc ADB = góc ADC (cặp góc t/ứng)

b) Vì góc ADB = góc ADC (cmt) mà góc ADB +  góc ADC 180 độ (2 góc kề bù)

    nên góc ADB = 180 độ / 2 = 90 độ => AD vuông góc với BC

c) Ta có : BD + CD = BC ( Vì D nằm giữa B và C)

                  mà BC = 12 cm

       => CD = 12 /2 = 6 cm

 Vì AD vuông góc với BC nên tam giác ADC vuông tại D 

   => AC2AC2 = AD2AD2 +CD2CD2 (Định lý Pytago)

    => 10^2 = AD ^ 2 + 6 ^2

   => AD^2 = 64

   => AD = 8 (cm) (vì AD > 0 )

 d) bạn c/m cho tam giác DEB = tam giác DFC (cạnh huyền - góc nhọn) nhé

       => DE = DF (cặp cạnh tương ứng) => tam giác DEF cân tại D( đn)

15 tháng 8 2023

A B C D E F H

a/

Xét tf vuông ABD và tg vuông EBD có

\(\widehat{ABD}=\widehat{EBD}\) (gt)

BD chung

=> tg ABD = tg EBD (Hai yg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau) => AD=DE

b/

Gọi H là giao của BD và AE

Xét tg ABH và tg EBH có

tg ABD = tg EBD (cmt) => AB=EB

\(\widehat{ABD}=\widehat{EBD}\) (gt)

BH chung

=> tg ABH = tg EBH (c.g.c) => HA=HE (1)

\(\Rightarrow\widehat{AHB}=\widehat{EHB}\) mà \(\widehat{AHB}+\widehat{EHB}=\widehat{AHE}=180^o\)

\(\Rightarrow\widehat{AHB}=\widehat{EHB}=90^o\Rightarrow BD\perp AE\) (2)

Từ (1) và (2) => BD là đường trung trực của AE

c/

Gọi F' là giao của AB và DE

Xét tg vuông F'EB và tg vuông ABC có

\(\widehat{BF'E}=\widehat{BCA}\) (cùng phụ với \(\widehat{ABC}\) )

AB=EB (cmt)

=> tg F'EB = tg ABC (Hai tg vuông có cạnh góc vuông và góc nhọn tương ứng bằng nhau)

=> BF=BC

Xét tg F'BD và tg CBD có

BF'=BC

\(\widehat{ABD}=\widehat{EBD}\) (gt)

BD chung

=> tg F'BD = tg CBD (c.g.c) => DF' = DC

Mà DF = DC \(\Rightarrow F\equiv F'\) =>A, B, F thẳng hàng

d/

Xét tg BCF có

\(CA\perp BF;FE\perp BC\) => D là trực tâm của tg BCF

\(\Rightarrow BD\perp CF\) (trong tg 3 đường cao đồng quy)