K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2023

Câu a tam giác BDE = 2 lần tam giác ABD rồi, không = nhau bạn xem lại đề: )

b

Có \(\widehat{ACB}=90^o-\widehat{ABC}=90^o-60^o=30^o=\widehat{EBC}\)

=> Tam giác BEC cân tại E

=> BE = EC

c

Có \(\widehat{DBC}=\widehat{DBE}+\widehat{EBC}=60^o+30^o=90^o\Rightarrow DB\perp BC\)

 

a) Ta có: ΔABC vuông tại A(gt)

nên \(\widehat{ABC}+\widehat{ACB}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{ABC}=90^0-\widehat{ACB}=90^0-30^0\)

hay \(\widehat{ABC}=60^0\)

Ta có: ΔAHB vuông tại A(AH⊥BC)

nên \(\widehat{BAH}+\widehat{ABH}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{BAH}=90^0-\widehat{ABH}=90^0-60^0=30^0\)

Ta có: tia AH nằm giữa hai tia AB,AC

nên \(\widehat{BAH}+\widehat{CAH}=\widehat{BAC}\)

hay \(30^0+\widehat{CAH}=90^0\)

\(\Leftrightarrow\widehat{CAH}=60^0\)

Ta có: AD là tia phân giác của \(\widehat{CAH}\)(gt)

nên \(\widehat{DAC}=\dfrac{\widehat{CAH}}{2}=\dfrac{60^0}{2}=30^0\)

Vậy: \(\widehat{ABC}=60^0\)\(\widehat{DAC}=30^0\)

b) Xét ΔADH và ΔADE có 

AH=AE(gt)

\(\widehat{HAD}=\widehat{EAD}\)(AD là tia phân giác của \(\widehat{HAE}\))

AD chung

Do đó: ΔADH=ΔADE(c-g-c)

\(\widehat{AHD}=\widehat{AED}\)(hai góc tương ứng)

mà \(\widehat{AHD}=90^0\)(AH⊥HD)

nên \(\widehat{AED}=90^0\)

hay DE⊥AC(đpcm)

c) Ta có: ΔAHD=ΔAED(cmt)

nên HD=ED(hai cạnh tương ứng)

Xét ΔFHD vuông tại H và ΔCED vuông tại E có 

FH=CE(gt)

HD=ED(cmt)

Do đó: ΔFHD=ΔCED(cạnh huyền-cạnh góc vuông)

\(\widehat{FDH}=\widehat{CDE}\)(hai góc tương ứng)

mà \(\widehat{CDE}+\widehat{HDE}=180^0\)(hai góc kề bù)

nên \(\widehat{FDH}+\widehat{EDH}=180^0\)

\(\widehat{FDE}=180^0\)

hay  F,D,E thẳng hàng(đpcm)

18 tháng 12 2023

a: Xét ΔBAD và ΔBED có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔBAD=ΔBED

b: Ta có: ΔBAD=ΔBED

=>BA=BE

=>B nằm trên đường trung trực của AE(2)

Ta có: ΔBAD=ΔBED

=>DA=DE
=>D nằm trên đường trung trực của AE(1)

Từ (1) và (2) suy ra BD là đường trung trực của AE

=>BD\(\perp\)AE tại trung điểm I của AE

c: Ta có: ΔBAD=ΔBED
=>\(\widehat{BAD}=\widehat{BED}\)

mà \(\widehat{BAD}=90^0\)

nên \(\widehat{BED}=90^0\)

=>DE\(\perp\)BC

Ta có: AH\(\perp\)BC

DE\(\perp\)BC

Do đó: AH//DE

d: Ta có: \(\widehat{EDC}+\widehat{ACB}=90^0\)(ΔEDC vuông tại E)

\(\widehat{ABC}+\widehat{ACB}=90^0\)(ΔABC vuông tại A)

Do đó: \(\widehat{EDC}=\widehat{ABC}\)

e: Xét ΔDAK vuông tại A và ΔDEC vuông tại E có

DA=DE

\(\widehat{ADK}=\widehat{EDC}\)(hai góc đối đỉnh)

Do đó: ΔDAK=ΔDEC

=>DK=DC và AK=EC

Ta có: BK=BA+AK

BC=BE+EC

mà BA=BE và AK=EC

nên BK=BC

=>B nằm trên đường trung trực của KC(3)

Ta có: DK=DC

=>D nằm trên đường trung trực của KC(4)

Ta có: MK=MC

=>M nằm trên đường trung trực của CK(5)

Từ (3),(4),(5) suy ra B,D,M thẳng hàng

loading...

a: Xét ΔABD vuông tại A và ΔABE vuông tại A có

AB chung

AD=AE

=>ΔABD=ΔABE

=>BD=BE

=>ΔBED cân tại B

mà góc BED=60 độ

nên ΔBED đều

c: góc DBC=góc DBA+góc CBA

=30+60=90 độ

=>BD vuông góc BC

b: Sửa đề: Cm EB=EC

Xét ΔEBC có góc EBC=góc ECB

nên ΔEBC cân tại E

=>EB=EC

29 tháng 11 2021

1/ Xét tg vuông BEA và tg vuông BEM có

BE chung; \(\widehat{ABE}=\widehat{MBE}\Rightarrow\Delta BEA=\Delta BEM\)  (Hai tg vuông có cạnh huyền và 1 góc nhọn bằng nhau)

2/ 

\(\Delta BEA=\Delta BEM\Rightarrow BA=BM\) => tg BAM cân tại B \(\Rightarrow BE\perp AM\) (trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường cao)

3/ Xét tg vuông AEN và tg vuông MEC có

\(\Delta BEA=\Delta BEM\Rightarrow AE=ME\)

\(\widehat{AEN}=\widehat{MEC}\) (góc đối đỉnh)

\(\Rightarrow\Delta AEN=\Delta MEC\) (hai tg vuông có cạnh góc vuông và góc nhọn tương ứng bằng nhau) \(\Rightarrow AN=MC\)

4/ Ta có

BA=BM; AN=MC (cmt) => BA+AN=BM+MC => BN=BC => tg BNC cân tại B

Mà \(\widehat{ABE}=\widehat{MBE}\)

\(\Rightarrow BE\perp NC\) (trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường cao)

Ta có \(BE\perp AM\left(cmt\right)\)

=> AM // NC (cùng vuông góc với BE)

29 tháng 7 2017

ahihi DồKết quả hình ảnh cho ban làm rớt nà     ahihi đồ chó

30 tháng 7 2017

bn có bị j ko z