Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì CK là tia phân giác của \(\widehat{ACD}\)nên \(\widehat{ACK}=\widehat{KCD=}\frac{\widehat{ACD}}{2}\)
Vì CM là tia phân giác của \(\widehat{DCB}\)nên \(\widehat{BCM}=\widehat{MCD}=\frac{\widehat{DCB}}{2}\)
Xét \(\Delta DBC\)vuông tại D có: \(\widehat{DCB}+\widehat{B}=90^0\)
mà \(\widehat{DCB}+\widehat{ACD}=90^0\)
=> \(\widehat{B}=\widehat{ACD}\)
Vì \(\widehat{AMC}\)là góc ngoài của \(\Delta MCB\)nên \(\widehat{AMC}=\widehat{B}+\widehat{MCB}=\widehat{ACD}+\widehat{MCB}=90^{0^{ }}-\widehat{DCM}=90^0-\widehat{MCB}\)
Ta lại có \(\widehat{ACM}=90^{0^{ }}-\widehat{MCB}\)
Xét\(\Delta ACM\)có \(\widehat{AMC}\)=\(\widehat{ACM}\)(=900-\(\widehat{MCB}\))
nên \(\Delta ACM\)cân ( đpcm)
bạn tự vẽ hình nhé
a) ta có:
EAB + CAB = 1800 ( 2 góc kề bù )
EAB + 1200 = 1800
=> EAB = 1800 - 1200 = 600 (1)
vì: EB // AD
=> EBA = BAD = 120/2 = 600
mà EAB + ABE + BEA = 1800
=> 600 + 600 + BEA = 1800
=> BEA = 1800 - 600 - 600 = 600
=> TAM GIÁC ABE ĐỀU (CÓ 3 GÓC = 600) (đpcm)
1/ Xét tg vuông BEA và tg vuông BEM có
BE chung; \(\widehat{ABE}=\widehat{MBE}\Rightarrow\Delta BEA=\Delta BEM\) (Hai tg vuông có cạnh huyền và 1 góc nhọn bằng nhau)
2/
\(\Delta BEA=\Delta BEM\Rightarrow BA=BM\) => tg BAM cân tại B \(\Rightarrow BE\perp AM\) (trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường cao)
3/ Xét tg vuông AEN và tg vuông MEC có
\(\Delta BEA=\Delta BEM\Rightarrow AE=ME\)
\(\widehat{AEN}=\widehat{MEC}\) (góc đối đỉnh)
\(\Rightarrow\Delta AEN=\Delta MEC\) (hai tg vuông có cạnh góc vuông và góc nhọn tương ứng bằng nhau) \(\Rightarrow AN=MC\)
4/ Ta có
BA=BM; AN=MC (cmt) => BA+AN=BM+MC => BN=BC => tg BNC cân tại B
Mà \(\widehat{ABE}=\widehat{MBE}\)
\(\Rightarrow BE\perp NC\) (trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường cao)
Ta có \(BE\perp AM\left(cmt\right)\)
=> AM // NC (cùng vuông góc với BE)