Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta AKB\) và \(\Delta\)AKC có:
AK chung
AB = AC (gt)
KB = KC (K là trung điểm BC)
\(\Rightarrow\)\(\Delta\)AKB = \(\Delta\)AKC (c-c-c)
b) Do \(\Delta AKB\) = \(\Delta AKC\) (cmt)
\(\Rightarrow\) \(\widehat{AKB}=\widehat{AKC}\) (hai góc tương ứng)
Mà \(\widehat{AKB}\) và \(\widehat{AKC}\) là hai góc kề bù
\(\Rightarrow\) \(\widehat{AKB}=\widehat{AKC}\) \(=\dfrac{180^0}{2}=90^0\)
\(\Rightarrow\) AK \(\perp\) BC
a: Xét ΔAKB và ΔAKC có
AK chung
AB=AC
KB=KC
Do đó: ΔAKB=ΔAKC
b: Ta có: ΔABC cân tại A
mà AK là đường trung tuyến
nên AK là đường cao
a: Xét ΔAKB và ΔAKC có
AK chung
KB=KC
AB=AC
Do đó: ΔAKB=ΔAKC
a,Xét tam giác AKC và AKB có:
CA=BA (gt)
CK=BK(gt)
AK :cạnh chung
=>Tam giác AKC=AKB(c.c.c)
=>góc AKC =góc AKB ( vì hai góc tương ứng)
lại có :góc AKC+góc AKB =180 °(vì hai góc kề bù )
=>AKB=AKC =90 °=>AK ⊥ BC (đpcm)
b,Ta có EC ⊥ CB
AK ⊥ CB
=>CE//AK(quan hệ từ vuông góc đến song song)
c, \(\widehat{CEA}+\widehat{CBA}\) =90
\(\widehat{ACB}+\widehat{ABC}\) = 90
=> \(\widehat{CEA}=\widehat{ACB}\)
Xét tam giác vuông CAE và CAB có:
AC chung
\(\widehat{CEA}=\widehat{ACB}\)
=> Tam giác CAE = CAB
=> CE = CB ( hai cạnh tương ứng)
a: Xét ΔAKB và ΔAKC có
AK chung
KB=KC
AB=AC
=>ΔAKB=ΔAKC
=>góc AKB=góc AKC=180/2=90 độ
=>AK vuông góc BC
b: AK vuông góc BC
CE vuông góc CB
=>AK//CE
Xét ΔCEB vuông tại C có góc B=45 độ
nên ΔCEB vuông cân tại C
=>CE=CB
c: AK=1/2CE(do AK là đường trung bình của ΔCEB)
a: Xét ΔAKB và ΔAKC có
AB=AC
AK chung
KB=KC
Do đó: ΔAKB=ΔAKC
a: Xét ΔAKB và ΔAKC có
AB=AC
KB=KC
AK chung
Do đó: ΔAKB=ΔAKC
=>góc AKB=góc AKC=90 độ
=>AK vuông góc với BC