K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 5 2023

Lời giải:

Ta có: $\frac{3}{4}=\tan B=\frac{AC}{AB}$

$\Rightarrow AC=\frac{3}{4}AB=\frac{3}{4}.12=9$ (cm) 

$BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+9^2}=15$ (cm) - theo định lý Pitago

$\cot C=\frac{AC}{AB}=\tan B=\frac{3}{4}$

$\Rightarrow \widehat{C}=53,13^0$

7 tháng 10 2021

\(tanB=\frac{3}{4}\)

\(\Rightarrow\frac{AB}{BC}=\frac{3}{4}\)

Ta có:

\(AC^2+AB^2=BC^2\)

\(\Rightarrow AB^2=BC^2-AC^2=\frac{16}{9}AC^2-AC^2=\frac{7}{9}AC^2=144\)

\(\Rightarrow AC=13,6\)

\(\Rightarrow BC=18,1\)

Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC=12\left(cm\right)\)

\(\Leftrightarrow AB=9\left(cm\right)\)

hay AH=7,2(cm)

17 tháng 9 2021

AB=3/4AC 

Theo pytago ta có: AB²+AC²=BC²

(¾AC)²+AC²=15² 

=>AC=12 

=>AB=¾.12=9 

AB.AC=AH.BC( HỆ THỨC LƯỢNG)

=>AH=7.2

 

 

 

1 tháng 6 2021

Áp dung hệ thức lượng trong tam giác vuông ABC : 

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{AB^2+AC^2}{AB^2\cdot AC^2}\)

\(\Leftrightarrow AH=\dfrac{\sqrt{AB^2+AC^2}}{AB\cdot AC}\)

\(\Leftrightarrow AH=\dfrac{\sqrt{AB^2+\left(\dfrac{4AB}{3}\right)^2}}{AB\cdot\dfrac{4AB}{3}}=\dfrac{5AB}{4}\)

\(\Rightarrow AB=\dfrac{4\cdot\dfrac{12}{5a}}{5}=\dfrac{48}{25}a\)

\(BC=\dfrac{AB\cdot AC}{AH}=\dfrac{AB\cdot\dfrac{4}{3}AB}{\dfrac{5}{4}\cdot AB}=\dfrac{16}{15}AB=\dfrac{16}{15}\cdot\dfrac{48}{25}\cdot a=2.048a\)

25 tháng 7 2023

Ta có: \(cot\alpha=\dfrac{5}{12}\)

\(\Rightarrow\dfrac{AC}{AB}=\dfrac{5}{12}\Leftrightarrow\dfrac{AC}{30}=\dfrac{5}{12}\)

\(\Rightarrow AC=\dfrac{5\cdot30}{12}=12,5\left(cm\right)\)

Ta có \(\Delta ABC\) vuông tại A áp dụng định lý Py-ta-go ta có:

\(BC=\sqrt{AC^2+AB^2}=\sqrt{30^2+12,5^2}=32,4\left(cm\right)\)

25 tháng 7 2023

Góc B là bao nhiêu bạn?

AH
Akai Haruma
Giáo viên
17 tháng 6 2021

a.

Áp dụng hệ thức lượt trong tam giác vuông ta có:

$\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}$

$\Leftrightarrow \frac{1}{AC^2}=\frac{1}{AH^2}-\frac{1}{AB^2}=\frac{1}{3a^2}$

$\Rightarrow AC=\sqrt{3}a$

$BC=\sqrt{AB^2+AC^2}=\sqrt{a^2+3a^2}=2a$

b.

$HB=\frac{BC}{4}$ thì $HC=\frac{3}{4}BC$

$\Rightarrow \frac{HB}{HC}=\frac{1}{3}$

Áp dụng hệ thức lượt trong tam giác vuông:

$AB^2=BH.BC; AC^2=CH.BC$

$\Rightarrow \frac{AB}{AC}=\sqrt{\frac{BH}{CH}}=\frac{\sqrt{3}}{3}$

Áp dụng định lý Pitago:

$4a^2=BC^2=AB^2+AC^2=(\frac{\sqrt{3}}{3}.AC)^2+AC^2$

$\Rightarrow AC=\sqrt{3}a$

$\Rightarrow AB=a$

 

AH
Akai Haruma
Giáo viên
17 tháng 6 2021

c. 

Áp dụng hệ thức lượt trong tam giác vuông:

$AB^2=BH.BC$

$\Leftrightarrow AB^2=BH(BH+CH)$

$\Leftrightarrow a^2=BH(BH+\frac{3}{2}a)$

$\Leftrightarrow BH^2+\frac{3}{2}aBH-a^2=0$

$\Leftrightarrow (BH-\frac{a}{2})(BH+2a)=0$

$\Rightarrow BH=\frac{a}{2}$
$BC=BH+CH=2a$

$AC=\sqrt{BC^2-AB^2}=\sqrt{3}a$

d. Tương tự phần a.