Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(AC=\sqrt{10^2-5^2}=5\sqrt{3}\left(cm\right)\)
b: ΔDEC vuông tại E
=>DE<DC
c: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
d: Xét ΔDBC có góc DBC=góc DCB
nên ΔDBC cân tại D
e: gọi giao của CF và AB là H
Xét ΔBHC có
BF,CA là đường cao
BF cắt CA tại D
=>D là trực tâm
=>HD vuông góc BC tại E
=>H,D,E thẳng hàng
=>BA,DE,CF là trực tâm
Tg ABD =tg EBD ( cm trên) •> AD=DE( 2 cạnh tương ứng) (1)
Tg ADF vg tại A=> Góc A lớn nhất=> FD lớn nhất( Qh giữa góc và cạnh đối diện trong 1 tam giác)=> AD<FD(2)
Từ 1 và 2 => ED<FD
a) Tam giác ABC vuông tại A => AB2+AC2=BC2 ( theo định lý Pitago)
=> 62+Ac2=102 =>AC2=100-36=64=> AC= 8
Vì D nằm trên AC=> AD+DC= AC=> 3+DC=8=> DC=5(cm)
A) XÉT \(\Delta ABC\)VUÔNG TẠI A
\(\Rightarrow BC^2=AB^2+AC^2\left(PYTAGO\right)\)
THAY \(10^2=6^2+AC^2\)
\(100=36+AC^2\)
\(\Rightarrow AC^2=100-36\)
\(\Rightarrow AC^2=64\)
\(\Rightarrow AC=\sqrt{64}=8\left(cm\right)\)
ta có \(AD+DC=AC\)
\(\Leftrightarrow3+DC=8\)
\(\Leftrightarrow DC=8-3=5\left(cm\right)\)
B) XÉT \(\Delta ABD\)VÀ \(\Delta EBD\)CÓ
\(\widehat{BAD}=\widehat{BED}=90^o\)
\(\widehat{ABD}=\widehat{EBD}\left(gt\right)\)
BD LÀ CẠNH CHUNG
=>\(\Delta ABD\)=\(\Delta EBD\)( CH-GN)
\(\Rightarrow BA=BE\)(HAI CẠNH TƯƠNG ỨNG )
=> \(\Delta BAE\)LÀ TAM GIÁC CÂN TẠI B
c) XÉT \(\Delta ADF\)VUÔNG TẠI A
\(\Rightarrow DF>AD\left(1\right)\)( CẠNH HUYỀN LỚN NHẤT )
VÌ \(\Delta ABD\)=\(\Delta EBD\)(CMT)
=> \(AD=ED\left(2\right)\)(HAI CẠNH TƯƠNG ỨNG )
TỪ (1) VÀ (2)
\(\Rightarrow DF>ED\)
a: \(AC=\sqrt{BC^2-AB^2}=8\left(cm\right)\)
CD=AC-CD=5cm
b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
Do đó: ΔBAD=ΔBED
Suy ra: BA=BE
hay ΔBAE cân tại B
c: Ta có: DE=DA
mà DA<DF
nên DE<DF