Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác ABC vuông tại A, đường cao AH:
nêN\(\hept{\begin{cases}AB^2=HB.BC\\AC^2=HC.BC\end{cases}}\hept{\begin{cases}\\\end{cases}\frac{AB^2}{AC^2}=\frac{HB.BC}{HC.BC}=\frac{HB}{HC}\Leftrightarrow\frac{HB}{HC}=\frac{AB^2}{AC^2}=\left(\frac{AB}{AC}\right)^2}\)
Vì AD là đường phân giác tam giác ABC:
\(\Rightarrow\frac{BD}{DC}=\frac{AB}{AC}=\frac{36}{60}=\frac{3}{5}\)
\(\Rightarrow\frac{BH}{CH}=\left(\frac{AB}{AC}\right)^2=\left(\frac{3}{5}\right)^2=\frac{9}{25}\)
B. Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{HB}{HC}=\frac{9}{25}\)
\(\Rightarrow\frac{BH}{9}=\frac{CH}{25}=\frac{BH+CH}{9+25}=\frac{BC}{34}=\frac{BD+DC}{34}=\frac{15+25}{34}=\frac{40}{34}=\frac{20}{17}\)
\(\Rightarrow BH=\frac{9.20}{17}=\frac{180}{17}cm\)
\(\Rightarrow CH=40-\frac{180}{17}=\frac{500}{17}cm\)
\(\Delta ABC\)vuông tại A. đường cao AH:
\(AH^2=BH.CH\)
\(\Leftrightarrow AH=\sqrt{BH.HC}\)
\(\Leftrightarrow AH=\sqrt{\frac{180}{17}.\frac{500}{17}}\)
\(\Leftrightarrow AH=\sqrt{\frac{90000}{289}}\)
\(\Leftrightarrow AH=\frac{300}{17}cm\)
Bạn xem coi đúng không...
kẻ đường cao AH ta có \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)
AD và AE là hai tia phân giác cả hai góc kề bù => AD _|_ AE
AH là đường cao của tam giác vuông ADE ta có
\(\frac{1}{AH^2}=\frac{1}{AD^2}+\frac{1}{AE^2}\)
vậy \(\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{AD^2}+\frac{1}{AE^2}\)