Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\dfrac{BH}{CH}=\dfrac{AB^2}{AC^2}\)
b: \(\dfrac{BE}{CF}=\dfrac{BH^2}{AB}:\dfrac{CH^2}{AC}=\dfrac{BH^2}{AB}\cdot\dfrac{AC}{CH^2}\)
\(=\dfrac{BH^2}{CH^2}\cdot\dfrac{AC}{AB}=\dfrac{AB^4}{AC^4}\cdot\dfrac{AC}{AB}=\dfrac{AB^3}{AC^3}\)
e: \(BE\cdot CF\cdot BC\)
\(=\dfrac{HB^2}{AB}\cdot\dfrac{HC^2}{AC}\cdot BC\)
\(=\dfrac{AH^4}{AB\cdot AC}\cdot BC=\dfrac{AH^4}{AH\cdot BC}\cdot BC=AH^3\)
\(=EF^3\)
a: \(BD\cdot CE\cdot BC\)
\(=\dfrac{HB^2}{AB}\cdot\dfrac{HC^2}{AC}\cdot\dfrac{AB\cdot AC}{AH}\)
\(=\dfrac{AH^4}{AH}=AH^3\)
b: \(\dfrac{BD}{CE}=\dfrac{HB^2}{AB}:\dfrac{HC^2}{AC}=\dfrac{HB^2}{AB}\cdot\dfrac{AC}{HC^2}=\dfrac{AB^4}{AB}\cdot\dfrac{AC}{AC^4}=\dfrac{AB^3}{AC^3}\)
HB/HC=1/4
nen HC=4HB
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
\(\Leftrightarrow4HB^2=14^2=196\)
=>HB=7(cm)
=>HC=28(cm)
BC=BH+CH=35(cm)
\(AB=\sqrt{7\cdot35}=7\sqrt{5}\left(cm\right)\)
\(AC=\sqrt{28\cdot35}=14\sqrt{5}\left(cm\right)\)
\(C=AB+AC+BC=21\sqrt{5}+35\left(cm\right)\)
Ta có: \(\dfrac{HB}{HC}=\dfrac{1}{4}\)
=> \(HC=4HB\)
Đặt HC = x ta có: => HB = 4x
\(AH^2=HB.HC\)
hay \(14^2=4x.x\)
=> 196 = 4x2
=> x = 7
=> HB = 4x = 4.7 = 28
Ta có: BC = HB + HC = 7 + 28 = 35
Xét \(\Delta AHC\) vuông tại H ta có:
\(AH^2+HC^2=AC^2\)
=> AC = \(7\sqrt{5}\) cm
Xét \(\Delta AHB\) vuông tại H ta có:
\(AB^2=AH^2+BH^2=14^2+28^2=980\)
=> AB = \(14\sqrt{5}cm\)
Chu vi tam giác ABC:
AB +AC+BC= \(14\sqrt{5}+7\sqrt{5}+35=35+21\sqrt{5}\)
HB/HC=3/4 nên \(\dfrac{AB}{AC}=\sqrt{\dfrac{BH}{CH}}=\dfrac{\sqrt{3}}{2}\)
\(\Leftrightarrow AC=4:\dfrac{\sqrt{3}}{2}=\dfrac{8\sqrt{3}}{3}\left(cm\right)\)
\(BC=\sqrt{AB^2+AC^2}=\dfrac{4\sqrt{21}}{3}\left(cm\right)\)
\(C=AB+BC+AC=\dfrac{12+8\sqrt{3}+4\sqrt{21}}{3}\left(cm\right)\)