Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(AC=\sqrt{10^2-5^2}=5\sqrt{3}\left(cm\right)\)
b: ΔDEC vuông tại E
=>DE<DC
c: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
d: Xét ΔDBC có góc DBC=góc DCB
nên ΔDBC cân tại D
e: gọi giao của CF và AB là H
Xét ΔBHC có
BF,CA là đường cao
BF cắt CA tại D
=>D là trực tâm
=>HD vuông góc BC tại E
=>H,D,E thẳng hàng
=>BA,DE,CF là trực tâm
xét tam giác deb và tam giác dab có
góc bad= góc bed
bd là cạnh chung
góc abd =góc ebd
=>tg ded =tg dab
a) Ta có: AB < AC
=> ACB < ABC
ABH = 90 - 60 = 30o
b) DAC = DAB = 90 - (A/2) = 90 - 30 = 60o
ABI = 90 - 30 = 60
Xét 2 tam giác vuông AIB và BHA có: AB (chung)
Ta có: BAH = ABD = 60 (cmt)
=> AIB = BHA (ch - gn)
c) Theo câu a), ta có: Tam giác AIB = BHA (ch - gn)
=> AIB = BHA = 60o
=> BEA = 180 - 60 - 60 = 60o
Có: ABE = BEA = EAB = 60
=> Tam giác ABE là tam giác đều.
d) Gọi Bx là tia đối của tia BA
Xét tam giác ADB và tam giác ADC có: AB = AE
EAD = DAB = 30o
Cạnh AD chung.
=> Tam giác ADB = tam giác ADC (c.g.c)
=> DB = DB (1) và góc ABD = góc AED
Do đó:
CBx = CED (cùng kề bù với 2 góc = nhau)
CBx > C
=> DC > DE (2)
Từ (1); (2) => DC > DB
bạn vào đây để giải đáp mọi bài toán chỉ trong 10 giây copy link này vào
https://www.youtube.com/watch?v=fvGaHwKrbUc
a) Xét ΔCAE và ΔKAE có
\(\widehat{ACE}=\widehat{AHE}=90\left(gt\right)\)
AE: cạnh chung
\(\widehat{CAE}=\widehat{HAE}\left(gt\right)\)
=> ΔCAE=ΔKAE (cạnh huyền-góc nhạn)
=> AC=AK
=> ΔACK cân tại A
Mà AE là tia phân giác của \(\widehat{CAK}\)
=> AE cũng là đường cao của ΔACK
=> AE vuông góc với CK
b) Có ΔCAK cân tại A(cmt)
Mà: \(\widehat{A}=60\left(gt\right)\)
=> ΔCAK là tam giác đều
=> AK=CK (1)
Vì ΔABC cân tại C(gt), có CK là đường cao ứng với cạnh huyền AB
=> CK=KB (2)
Từ (1)(2) suy ra: KA=KB
Bạn xem lại đề