Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(AC=\sqrt{BC^2-AB^2}=8\\ \Rightarrow A=\dfrac{\dfrac{AC}{BC}+\dfrac{AB}{BC}}{\dfrac{AB}{AC}+\dfrac{AC}{AB}}=\dfrac{\dfrac{AB+AC}{BC}}{\dfrac{6}{8}+\dfrac{8}{6}}=\dfrac{\dfrac{14}{10}}{\dfrac{25}{12}}=\dfrac{7}{5}\cdot\dfrac{12}{25}=\dfrac{84}{125}\)
a) Ta có: \(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=3,6\left(cm\right)\)
Ta có: \(AC=\sqrt{BC^2-AB^2}=\sqrt{10^2-6^2}=8\)
Ta có: \(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{6.8}{10}=4,8\left(cm\right)\)
\(\Delta AHB\) vuông tại H có đường cao HD \(\Rightarrow AD.AB=AH^2\)
\(\Delta AHC\) vuông tại H có đường cao HE \(\Rightarrow AE.AC=AH^2\)
\(\Rightarrow AD.AB=AE.AC\Rightarrow\dfrac{AD}{AE}=\dfrac{AC}{AB}=\dfrac{8}{6}=\dfrac{4}{3}\)
b) Vì \(\angle HDA=\angle HEA=\angle DAE=90\Rightarrow DAEH\) là hình chữ nhật
\(\Rightarrow DE=AH\)
Ta có: \(BC.sinB.cosB=BC.\dfrac{AC}{BC}.\dfrac{AB}{BC}=\dfrac{AB.AC}{BC}=\dfrac{AH.BC}{BC}=AH\)
\(\Rightarrow BC.sinB.cosB=DE\)
Áp dụng định lí Pi-ta-go vào tam giác vuông ABC, ta có:
B C 2 = A B 2 + A C 2 ⇒ A B 2 = B C 2 - A C 2
Bài 2:
a: Xét ΔABC vuông tại A có
\(AB=BC\cdot\cos60^0\)
\(\Leftrightarrow BC=\dfrac{a}{\dfrac{1}{2}}=2a\)
\(\Leftrightarrow AC=\sqrt{BC^2-AB^2}=a\sqrt{3}\)
\(\widehat{C}=90^0-60^0=30^0\)
\(\sin\widehat{B}=\dfrac{\sqrt{51}}{10}\)
\(\tan\widehat{B}=\dfrac{\sqrt{51}}{7}\)
\(\cot\widehat{B}=\dfrac{7\sqrt{51}}{51}\)
\(cos^2B=1-sin^2B->Sin^2B+cos^2B=1\) (luôn đúng )=> đpcm.
sin đi học cos không hư tang đoàn kết costang kết đoàn