K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC vuông tại A và ΔADE vuông tại A có

AB/AD=AC/AE

Do đó: ΔABC\(\sim\)ΔADE

b: \(BC=\sqrt{24^2+32^2}=40\)

\(DE=\sqrt{9^2+12^2}=15\)

c: Ta có: ΔABC\(\sim\)ΔADE

nên \(\widehat{ABC}=\widehat{ADE}\)

mà hai góc này ở vị trí so le trong

nên BC//DE

a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có

góc ACB chung

Do dó ΔCDE đồng dạng với ΔCAB

=>CD/CA=CE/CB

=>CD/CE=CA/CB

=>ΔCDA đồng dạng với ΔCEB

=>EB/DA=BC/AC

mà BC/AC=AC/CH

nên EB/DA=AC/CH=BA/HA

=>BE/AD=BA/HA

=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)

\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)

b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2

nên góc AEB=45 độ

=>ΔABE vuông cân tại A

=>AM vuông góc với BE

BM*BE=BA^2

BH*BC=BA^2

Do đó: BM*BE=BH/BC

=>BM/BC=BH/BE

=>ΔBMH đồng dạng với ΔBCE

Bài 1: Cho ∆ABC đều, kẻ AH vuông góc với BC tại H. Trên tia đối của tia BC lấy điểm E sao cho BE = BC. Trên tia đối của tia CB lấy điểm D sao cho CB = CD. a) Chứng minh rằng ∆AEB = ∆ADC b) Từ D kẻ DF vuông góc với AC tại F. Chứng minh rằng ∆CHF cân c) Chứng minh rằng AD//HF d) Từ B kẻ BM vuông góc AE tại M, từ C kẻ CN vuông góc với AD tại N. Gọi I là giao điểm của BM và CN. Chứng minh AI là phân giác của...
Đọc tiếp

Bài 1: Cho ∆ABC đều, kẻ AH vuông góc với BC tại H. Trên tia đối của tia BC lấy điểm E sao cho BE = BC. Trên tia đối của tia CB lấy điểm D sao cho CB = CD. a) Chứng minh rằng ∆AEB = ∆ADC b) Từ D kẻ DF vuông góc với AC tại F. Chứng minh rằng ∆CHF cân c) Chứng minh rằng AD//HF d) Từ B kẻ BM vuông góc AE tại M, từ C kẻ CN vuông góc với AD tại N. Gọi I là giao điểm của BM và CN. Chứng minh AI là phân giác của 𝐵𝐴𝐶

Bài 2: Cho ∆ABC có AB= AC = 5cm, BC = 6CM. Kẻ AK vuông góc với BC ( K ∈ BC). a) Chứng minh rằng KB = KC và 𝐵𝐴𝐾 ̂ =𝐶𝐴𝐾 ̂ b) Tính độ dài AK c) Kẻ KE vuông góc với AB ( E ∈ AB) , KD vuông góc với AC ( D ∈ AC). Chứng minh rằng ∆KDE là tam giác cân. d) Chứng minh rằng DE//BC e) Trên tia đối của tia AB lấy điểm M sao cho AB = AM. Chứng minh răng MC vuông góc với BC

Bài 3: Cho ∆ABC vuông tại B. Trên tia đối của tia BC lấy điểm D sao cho BD = BC a) Chứng minh rằng 𝐵𝐴𝐶 ̂ = 𝐵𝐴𝐷 ̂ b) Tính độ dài CD biết AB = 4cm, AC = 5 cm c) Kẻ BE vuông góc với AC ( E ∈ AC); BH vuông góc với AD ( H ∈ AD). ∆HBE là tam giác gì? Tại sao? d) ∆ABC cần có thêm điều kiện gì để ∆HBE đều

0
7 tháng 12 2017

Chương 1: MỆNH ĐỀ, TẬP HỢP

15 tháng 2 2019

Có: tam giác ABC đồng dạng với tam giác ADE
=>AB/AD=AC/AE
Có AB/AD=AB/2AB=1/2
AC/AE=AC/2AC=1/2
Vậy tam giác ABC đồng dạng với tam giác ADE the tỉ số đồng dạng là 1/2

23 tháng 1 2020

Bài 1.

a) Xét \(\Delta AIE\)\(\Delta BIC\) có:

\(IE=IB\)

\(\widehat{AIE}=\widehat{BIC}\left(đđ\right)\)

\(AI=IC\)

Vậy \(\Delta AIE\) $=$ \(\Delta BIC\) $(c.g.c)$

\(\Rightarrow AE=BC\)

b) \(\Delta AIE\) $=$ \(\Delta BIC\)

\(\Rightarrow\widehat{EAI}=\widehat{ICB}\)(so le trong)

\(\Rightarrow AE//BC\)

23 tháng 1 2020

Bài 2.

a) Xét \(\Delta AMB\)\(\Delta AMC\) có:

\(AB=AC\left(gt\right)\\MB=MC\left(gt\right)\\ AM:chung \)

Vậy \(\Delta AMB\) $=$\(\Delta AMC\) $(c.c.c)$

b) \(\Delta AMB\) $=$\(\Delta AMC\) (cmt) \(\Rightarrow\widehat{BAM}=\widehat{CAM}\)(2 góc tương ứng)

\(\widehat{BAM}+\widehat{CAM}=\widehat{BAC}\) (do tia $AM$ nằm giữa 2 tia $AB$ và $AC$)

\(\Rightarrow\widehat{BAM}=\widehat{CAM}=\)\(\dfrac{{\widehat {BAC}}}{2} \)

\(\Rightarrow\)$AM$ là tia phân giác của $\widehat{BAC}$

c)Vì \(\Delta AMB\) $=$\(\Delta AMC\) (cmt)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}\left(cmt\right)\)

\(\widehat{AMB}+\widehat{AMC}=180^o\) (2 góc kề bù)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\)\(\dfrac{180^o}{2}=90^o\)

\(\Rightarrow AM\perp BC\)

d) Vẽ tia $Am$ sao cho $\widehat{CAm}$ là góc ngoài tại đỉnh A của \(\Delta ABC\)

\( \Rightarrow\) $\widehat{CAm}=\widehat{ABC}+\widehat{ACB} (1)$ (tính chất góc ngoài của tam giác)

$\Delta AMB = \Delta AMC (cmt)$

$\Rightarrow \widehat{ABM}=\widehat{ACM}$

$\Rightarrow \widehat{ABC}=\widehat{ACB}$ \(\left(M\in BC\right)\)$(2)$
Từ $(1)$ và $(2)$ suy ra:

$\Rightarrow \widehat{CAm}=\widehat{ACB}+\widehat{ACB}=2\widehat{ACB}$

Mà $\widehat{CAm} = 2\widehat{A_1}$ (do $At$ là tia phân giác của

$\widehat{CAm}$)

$\Rightarrow \widehat{ACB}=\widehat{A_1}$

$\Rightarrow At//BC$

Bài 11:Cho đường tròn(O) đường kính AB=2R. Điểm C thuộc đường tròn(C không trùng với A và B).Trên nửa mặt phẳng bờ AB có chứa điểm C kẻ tiếp tuyến à với (O).Gọi M là điểm chính giữa cung nhỏ AC. Tia BC cắt Ax tại Q,AM cắt BC tại N, AC cắt BM tại P.a) Gọi K là điểm chính giữa cung AB(cung không chứa C).HỎi có thể xảy ra trường hợp 3 điểm Q,M,K thẳng hàng không?b) Xác định vị trí của C...
Đọc tiếp

Bài 11:Cho đường tròn(O) đường kính AB=2R. Điểm C thuộc đường tròn(C không trùng với A và B).Trên nửa mặt phẳng bờ AB có chứa điểm C kẻ tiếp tuyến à với (O).Gọi M là điểm chính giữa cung nhỏ AC. Tia BC cắt Ax tại Q,AM cắt BC tại N, AC cắt BM tại P.

a) Gọi K là điểm chính giữa cung AB(cung không chứa C).HỎi có thể xảy ra trường hợp 3 điểm Q,M,K thẳng hàng không?

b) Xác định vị trí của C trên nửa đường tròn tâm O để đường tròn ngoại tiếp tam giác MNQ tiếp xúc với (O).

Bài 12: Cho tứ giác ABCD có đường chéo BD không là phân giác của góc ABC và góc CDA.Một điểm P nằm trong tứ giác sao cho góc PBC=góc DBA; góc PDC = góc BDA.Chứng minh rằng tứ giác ABCD nội tiếp khi và chỉ khi AP=CP

Bài 13:Cho tam giác ABC có chu vi bằng 2p không đổi ngoại tiếp 1 đường tròn(O).Dựng tiếp tuyến MN với (O) sao cho MN song song với AC;M thuộc cạnh AB,N thuộc cạnh BC.Tính AC theo p để độ dài đoạn MN đạt giá trị lớn nhất.

Bài 14: Trong một tam giác cho trước hãy tìm bán kính lớn nhất của hai đường tròn bằng nhau tiếp xúc ngoài nhau đồng thời mỗi đường tròn tiếp xúc với hai cạnh của tam giác đó.

Bài 15: Trên cạnh AB của tam giác ABC lấy một điểm D sao cho đường tròn nột tiếp tam giác ACD và BCD bằng nhau

a) Tính đoạn CD theo các cạnh của tam giác

b)CMR: Điều kiện cần và đủ để góc C = 90 độ là điện tích tam giác ABC bằng diện tích hình vuông cạnh CD

Bài 16: Cho hình thang vuông ABCD có AB là cạnh đáy nhỏ,CD là cạnh đáy lớn,M là giao của AC và BD.Biết rằng hình thang ABCD ngoại tiếp đường tròn bán kính R.Tính diện tích tam giác ADM theo R

Bài 17:Cho tam giác ABC không cân,M là trung điểm cạnh BC,D là hình chiếu vuông góc của A trên BC; E và F tương ứng là các hình chiếu vuông góc của B và C trên đường kính đi qua A của đường tròn ngoại tiếp tam giác ABC.CMR: M là tâm đường tròn ngoại tiếp tam giác DEF

Bài 18: Cho đoạn thẳng AB, điểm C nằm giữa A và B, Tia Cx vuông góc với AB.Trên tia Cx lấy D và E sao cho CECB=CACD=3√CECB=CACD=3. Đường tròn ngoại tiếp tam giác ADC cắt đường tròn ngoại tiếp tam giác BEC tại H(H khác C). CMR: HC luôn đi qua một điểm cố định khi C chuyển động trên đoạn AB.Bài toán còn đúng không khi thay 3√3 bởi m cho trước(m>0)

Bài 19: Cho tam giác ABC nhọn và điểm M chuyện động trên đường thẳng BC.Vẽ trung trực của các đoạn BM và CM tương ứng cắt các đường thẳng AB và AC tại P và Q.CMR: Đường thẳng qua M và vuông góc với PQ đi qua 1 điểm cố định

Bài 20: Cho tam giác ABC và một đường tròn (O) đi qua A và C.Gọi K và N là các giao điểm của (O) với các cạnh AB,C.ĐƯờng tròn (O1) và (O2) ngoại tiếp tam giác ABC và tam giác KBN cắt nhau tại B và M.CMR: O1O2 song song với OM

 

Giúp t vs..^^^

6
21 tháng 2 2016

Dài thế này ai mà lm đc cho m k lm nữa

6 tháng 3 2016

làm hết dc đống bài này chắc mình ốm mấtkhocroi