Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
góc ACB chung
Do dó ΔCDE đồng dạng với ΔCAB
=>CD/CA=CE/CB
=>CD/CE=CA/CB
=>ΔCDA đồng dạng với ΔCEB
=>EB/DA=BC/AC
mà BC/AC=AC/CH
nên EB/DA=AC/CH=BA/HA
=>BE/AD=BA/HA
=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)
\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)
b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2
nên góc AEB=45 độ
=>ΔABE vuông cân tại A
=>AM vuông góc với BE
BM*BE=BA^2
BH*BC=BA^2
Do đó: BM*BE=BH/BC
=>BM/BC=BH/BE
=>ΔBMH đồng dạng với ΔBCE
Có: tam giác ABC đồng dạng với tam giác ADE
=>AB/AD=AC/AE
Có AB/AD=AB/2AB=1/2
AC/AE=AC/2AC=1/2
Vậy tam giác ABC đồng dạng với tam giác ADE the tỉ số đồng dạng là 1/2
Bài 1.
a) Xét \(\Delta AIE\) và \(\Delta BIC\) có:
\(IE=IB\)
\(\widehat{AIE}=\widehat{BIC}\left(đđ\right)\)
\(AI=IC\)
Vậy \(\Delta AIE\) $=$ \(\Delta BIC\) $(c.g.c)$
\(\Rightarrow AE=BC\)
b) \(\Delta AIE\) $=$ \(\Delta BIC\)
\(\Rightarrow\widehat{EAI}=\widehat{ICB}\)(so le trong)
\(\Rightarrow AE//BC\)
Bài 2.
a) Xét \(\Delta AMB\) và \(\Delta AMC\) có:
\(AB=AC\left(gt\right)\\MB=MC\left(gt\right)\\ AM:chung \)
Vậy \(\Delta AMB\) $=$\(\Delta AMC\) $(c.c.c)$
b) \(\Delta AMB\) $=$\(\Delta AMC\) (cmt) \(\Rightarrow\widehat{BAM}=\widehat{CAM}\)(2 góc tương ứng)
Mà \(\widehat{BAM}+\widehat{CAM}=\widehat{BAC}\) (do tia $AM$ nằm giữa 2 tia $AB$ và $AC$)
\(\Rightarrow\widehat{BAM}=\widehat{CAM}=\)\(\dfrac{{\widehat {BAC}}}{2} \)
\(\Rightarrow\)$AM$ là tia phân giác của $\widehat{BAC}$
c)Vì \(\Delta AMB\) $=$\(\Delta AMC\) (cmt)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}\left(cmt\right)\)
Mà \(\widehat{AMB}+\widehat{AMC}=180^o\) (2 góc kề bù)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\)\(\dfrac{180^o}{2}=90^o\)
\(\Rightarrow AM\perp BC\)
d) Vẽ tia $Am$ sao cho $\widehat{CAm}$ là góc ngoài tại đỉnh A của \(\Delta ABC\)
\( \Rightarrow\) $\widehat{CAm}=\widehat{ABC}+\widehat{ACB} (1)$ (tính chất góc ngoài của tam giác)
$\Delta AMB = \Delta AMC (cmt)$
$\Rightarrow \widehat{ABM}=\widehat{ACM}$
$\Rightarrow \widehat{ABC}=\widehat{ACB}$ \(\left(M\in BC\right)\)$(2)$
Từ $(1)$ và $(2)$ suy ra:
$\Rightarrow \widehat{CAm}=\widehat{ACB}+\widehat{ACB}=2\widehat{ACB}$
Mà $\widehat{CAm} = 2\widehat{A_1}$ (do $At$ là tia phân giác của
$\widehat{CAm}$)
$\Rightarrow \widehat{ACB}=\widehat{A_1}$
$\Rightarrow At//BC$
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB/AD=AC/AE
Do đó: ΔABC\(\sim\)ΔADE
b: \(BC=\sqrt{24^2+32^2}=40\)
\(DE=\sqrt{9^2+12^2}=15\)
c: Ta có: ΔABC\(\sim\)ΔADE
nên \(\widehat{ABC}=\widehat{ADE}\)
mà hai góc này ở vị trí so le trong
nên BC//DE