Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AB^2=5^2-3^2=16\)
hay AB=4(cm)
Vậy: AB=4cm
b) Xét ΔCDE và ΔCAB có
\(\dfrac{CD}{CA}=\dfrac{CE}{CB}\left(\dfrac{1.5}{3}=\dfrac{2.5}{5}\right)\)
\(\widehat{ECD}=\widehat{ACB}\)(hai góc đối đỉnh)
Do đó: ΔCDE\(\sim\)ΔCAB(c-g-c)
Suy ra: \(\widehat{CDE}=\widehat{CAB}\)(hai góc tương ứng)
mà \(\widehat{CAB}=90^0\)(gt)
nên \(\widehat{CDE}=90^0\)
hay ED\(\perp\)BC
Ta có: ΔCDE\(\sim\)ΔCAB(cmt)
nên \(\dfrac{DE}{AB}=\dfrac{CD}{CA}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{DE}{4}=\dfrac{1}{2}\)
hay DE=2(cm)
Vậy: DE=2cm
A B C D I K E F
a/ Dễ dàng chứng minh bằng cách áp dụng hệ thức về cạnh trong các tam giác vuông ABD và ACD :
\(AE.AB=AF.AC=AD^2\)
b/ Bạn tham khảo ở đây nhé : http://olm.vn/hoi-dap/question/633787.html
c/ Áp dụng tứ giác nội tiếp để giải (liên quan đến góc ngoài của tứ giác nội tiếp)