K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AB^2=5^2-3^2=16\)

hay AB=4(cm)

Vậy: AB=4cm

b) Xét ΔCDE và ΔCAB có

\(\dfrac{CD}{CA}=\dfrac{CE}{CB}\left(\dfrac{1.5}{3}=\dfrac{2.5}{5}\right)\)

\(\widehat{ECD}=\widehat{ACB}\)(hai góc đối đỉnh)

Do đó: ΔCDE\(\sim\)ΔCAB(c-g-c)

Suy ra: \(\widehat{CDE}=\widehat{CAB}\)(hai góc tương ứng)

mà \(\widehat{CAB}=90^0\)(gt)

nên \(\widehat{CDE}=90^0\)

hay ED\(\perp\)BC

Ta có: ΔCDE\(\sim\)ΔCAB(cmt)

nên \(\dfrac{DE}{AB}=\dfrac{CD}{CA}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{DE}{4}=\dfrac{1}{2}\)

hay DE=2(cm)

Vậy: DE=2cm

6 tháng 8 2015

a) Vì \(\frac{CD}{AC}=\frac{1,5}{3}=\frac{1}{2}\)\(\frac{CE}{BC}=\frac{2,5}{5}=\frac{1}{2}\)

Nên \(\frac{CD}{AC}=\frac{CE}{BC}=\frac{1}{2}\)

Xét ΔCDE và ΔCAB có

      \(\frac{CD}{AC}=\frac{CE}{BC}=\frac{1}{2}\)

Góc DCE=ACB(đối đỉnh)

Vậy hai tam giác đồng dạng với nhau

=> Góc CDE=CAB=90 độ

Vậy ΔCDE là tam giác vuông.

Áp dụng định lí Pi-ta-go vào ΔCDE ta có:

      \(CE^2=DC^2+DE^2\Rightarrow DE^2=CE^2-CD^2=2,5^2-1,5^2=4\)

=> \(DE=\sqrt{4}=2cm\).

b) Vì ΔCDE đồng dạng với ΔCAB nên

\(\frac{CD}{AC}=\frac{DE}{AB}\Rightarrow AB=\frac{AC.DE}{CD}=\frac{3.2}{1,5}=4\left(cm\right)\)

ΔABC vuông tại A, đường cao AH, theo hệ thức lượng, ta có:

  •       \(AH.BC=AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{4.3}{5}=2,4\left(cm\right)\)
  •        \(AC^2=CH.BC\Rightarrow CH=\frac{AC^2}{BC}=\frac{3^2}{5}=\frac{9}{5}=1,8\left(cm\right)\)

\(CH=BC-CH=5-1,8=3,2\left(cm\right)\)

  •  

 

21 tháng 6 2021

undefined

27 tháng 11 2021

grade 7??

a: AB=4cm

b: Xét ΔBCA và ΔECD có

CB/CE=CA/CD

góc BCA=góc ECD

Do đó: ΔBCA đồng dạng với ΔECD

Suy ra: góc CAB=góc CDE=90 độ

=>DE vuông góc với BC