Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D I K y x
a) Ta có AB = AC => ABC là tg cân ( cân tại A)
Xét \(\Delta ABD\)Và \(\Delta ACD\)
\(\widehat{ACD}=\widehat{ABD}\)( TAM GIÁC CÂN )
\(AC=AB\)
AD LÀ CẠNH CHUNG
=> 2 tam giác = nhau ( c.g.c )
b) Ta có Ay//BC
=> \(\widehat{yAC}=\widehat{ACB}\)( SO LE TRONG )
Mà \(\widehat{ACB}=\widehat{ABC}\)
=> \(\widehat{yAC}=\widehat{ABC}\)
c) Ta có tg ABC cân
=> AD là đg phân giác cũng là đường cao
=> \(AD\perp BC\)
MÀ \(Cx\perp BC\)
=> AD//Cx
d) Ta có Ay ( AK) //BC
Mà \(\widehat{ADC}=90^O\)
=> \(DA\perp Ay\)
Tứ giác AKCD là hình chữ nhâtk
mà theo tính chất của hình chữ nhật ( 2 đường chéo cắt nhau tại trung điểm của mỗi đường )
=> I là trung điểm của DK
a) xet tam giac ABC vuong tai A ta co
BC2=AB2+AC2 ( dinh ly pitago thuan) =32+42=9+16=25=> BC=5 cm
b) xet tam giac BHM vuong tai H va tam giac CKM vuong tai K taco:
BM=CM ( M la trung diem BC ) va goc BMH= goc CMK ( 2 goc doi dinh)
--> tam giac BHM= tam giac CKM ( ch-gn)
c) tu diem H den duong thang IM ta co
HM la duong xien, HI la duong vuong goc --> HI < HM (quan he duong xien duong vuong goc )
ma HM=MK ( tam giac BHM= tam giac CKM)
nen HI < MK
d)ta co : BK + KC> BC ( bat dang thuc trong tam giac BKC )
ma BH= CK ( tam giac BHM = tam giac CKM )
nen BK+BH > BC
xong roi
hình bạn tự vẽ nha
a) xét tam giác BMI và tam giác AMI có
BI=AI(giả thiết)
góc BIM = góc AIM(= 90 độ)
cạnh MI chung
=>tam giác BMI = tam giác AMI(c.g.c)
=>góc MBI= góc MAI(2 góc tương ứng)