Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
S_EFGH = S_ABCD - S_BGF - S_GCH - S_AEHD
Là các hình tam giác vuông và hình thang vuông, dễ dàng tìm được hàm diện tích của EFGH theo x: -2x2 + 32.5x
Nếu được thì đạo hàm là tìm được giá trị x mà S max.
![](https://rs.olm.vn/images/avt/0.png?1311)
b) Giả sử MNPQ là hình chữ nhật
=> ^QMN=90do HAY QM vuong goc voi MN
Lai co MN//BC
=> BC vuong goc voi QM
Ma QM //AO
=> AO vuong goc voi BC
=> O thuoc duong cao ke tu A den BC
Goi giao diem cua AO VA BC LA H
Để SMNPQ=SABC
=> MQ.QP=(BC.AH)/2
Mà QP=BC/2
=> MQ=AH
Ma MQ=AH/2
=> AH=AO/2
Mà AO hay AH vuong goc voi BC
=> BC la trung truc cua AO .
Vay de tu giac MNPQ vua la HCN vua co dien h =tam giac ABC thi BC phai la trung truc cua AO
a,Do tia AO nằm giữa tia AB và tia AC(gt)
Gọi O là điểm nằm giữa đoạn thẳng BC
sao cho BO< OC
M,N,P,Q lần lượt là trung điểm của OB,OC,AC,AB (gt)
=>BM=MO;ON=NC;CP=PA;AQ=QB
Vậy ta có:PQ là đường trung bình của tam giác ABC nên PQ//=1/2 BC (1)
Tương tự:
PN là đường trung bình của tam giác ACO nên PN//=1/2 AO (2)
QM là đường trung bình của tam giác ABO nên QM//=1/2 AO (3)
Từ (2),(3) suy ra:
PN//=QM=1/2 OA ( t/c 2 đường thẳng//) (4)
Do đó PQ//=MN
=> Tứ giác MNPQ là hình bình hành
b,theo cmt : PN//=QM=1/2 OA
Mặt khác, AO là cạnh đối diện của 2 góc B và góc C
Từ đó=>góc B=góc C
=> tam giác ABC cân tại A
=>O là trung điểm của BC
=>AO _|_BC nên góc AOB=góc AOC=90°
=> 3 điểm B,O,C thẳng hàng (vì BOC=180°=góc AOB+góc AOC)
M,N là trung điểm của OB và OC(gt)
nên B,M,O,N,C thẳng hàng.
=>QM_|_BC và PN_|_BC
Hay góc QMN=góc PNM=1 vuông (5)
Theo (1) PQ//BC
=>PQ_|_QM ; PQ_|_PN
Hay góc MQP=góc NPQ=1 vuông (6)
Từ (5),(6) suy ra:
Tứ giác MNPQ là hình chữ nhật (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
a:
ABCD là hình thoi
=>AC vuông góc BD tại trung điểm của mỗi đường
=>AC vuông góc BD tại O và O là trung điểm chung của AC và BD
AM+MB=AB
PC+PD=DC
mà AM=PC và AB=DC
nên MB=PD
Xét tứ giác BMDP có
BM//DP
BM=DP
Do đó: BMDP là hình bình hành
b: Xét tứ giác AQCN có
AQ//CN
AQ=CN
Do đó: AQCN là hình bình hành
=>AC cắt QN tại trung điểm của mỗi đường
=>O là trung điểm của QN
=>N,O,Q thẳng hàng
c: Xét ΔABD có AM/AB=AQ/AD
nên MQ//BD
=>MQ vuông góc AC
Xét ΔABC có
BM/BA=BN/BC
nên MN//AC
=>MQ vuông góc MN
BMDP là hình bình hành
=>BD cắt MP tại trung điểm của mỗi đường
=>O là trung điểm của MP
Xét tứ giác MNPQ có
O là trung điểm chung của MP và NQ
góc NMQ=90 độ
Do đó: MNPQ là hình chữ nhật