Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: Xét tứ giác ABEC có
M là trung điểm của AE
M là trung điểm của BC
Do đó:ABEC là hình bình hành
Suy ra: AC=BE và AC//BE
b: Xét tứ giác AIEK có
AI//KE
AI=KE
Do đó: AIEK là hình bình hành
Suy ra: Hai đường chéo AE và IK cắt nhau tại trung điểm của mỗi đường
mà M là trung điểm của AE
nên M là trung điểm của IK
hay I,M,K thẳng hàng
hình như trên
+)Ta có: ΔDMB=ΔENCΔDMB=ΔENC ( g-c-g) ( Vì ˆMBD=ˆNCEMBD^=NCE^ cùng bằng ˆACBACB^)
Nên MD = NE.
+)Xét ΔDMIΔDMI và ΔENIΔENI: ˆD=ˆE=900,MD=NE(cmt)D^=E^=900,MD=NE(cmt)
ˆMID=ˆNIEMID^=NIE^( Hai góc đối đỉnh)
Nên ΔDMI=ΔENIΔDMI=ΔENI( cgv - gn)
⇒MI=NI⇒MI=NI
+)Từ B và C kẻ các đường thẳng lần lượt vuông
Góc với AB và AC cắt nhau tại J.
Ta có: ΔABJ=ΔACJ(g−c−g)⇒JB=JCΔABJ=ΔACJ(g−c−g)⇒JB=JC
Nên J thuộc AL đường trung trực ứng với BC
Mặt khác : Từ ΔDMB=ΔENCΔDMB=ΔENC( Câu a)
Ta có : BM = CN
BJ = CJ ( cm trên)
ˆMBJ=ˆNCJ=900MBJ^=NCJ^=900
Nên ΔBMJ=ΔCNJΔBMJ=ΔCNJ ( c-g-c)
⇒MJ=NJ⇒MJ=NJ hay đường trung trực của MN
Luôn đi qua điểm J cố định.
+ Xét tứ giác ABDC có:
MA=MD và MB=MC => tứ giác ABDC là hình bình hành (tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường thì tứ giác đó là hình bình hành)
Mà ta lại có ^BAC=90
=> Hình bình hành ABDC là hình chữ nhật
+ Kéo dài BA về phía A cắt EI tại F. Xét tứ giác ACIF có AF cuông góc với AC
CI vuông góc với AC (do ABDC là hình chữ nhật)
=> AF//CI. mà IF//AC => ACIF là hình bình hành (tứ giác có các cặp cạnh đối // từng đôi một)
Mà CI vuông góc AC => ACIF là hình chữ nhật
=> AF=CI mà CI=AC => AF=AC (1)
+ Xét tam giác vuông ABC ta có MA=MB=MC (trong tam giác vuông trung tuyến thuộc cạnh huyền thì bằng 1/2 cạnh huyền) => tam giác MAC cân tại M => ^ACB=^MAC
Mà ^ACB=^BAH (cùng phụ với ^ABC)
=>^MAC=BAH mà ^BAH=^EAF (đối đỉnh) => ^EAF=^MAC (2)
+ Xét hai tam giác vuông AEF và tam giác vuông ADC có
^AFE=^ACD=90 (3)
Từ (1) (2) và (3) => tam giác AEF=tam giác ADC (g.c.g)
=> AE=AD
Mà AD=BC (đường chéo của hình chữ nhật ABDC)
=> AE=BC (dpcm)
gọi H, K là trung điểm AB, AC thì HK là đường tb của hình thang DMNE. HK=(DM+EN)/2
Bc=2HK
A B C D E K G
Xét tam giác BKE có: KG và BA là các đường cao => ED cũng là đường cao => ED vuông góc với BK.
Vì tam giác ABC vuông cân, AD = AE => DE //BC và góc ABC = 45 độ
=> BC vuông gocsvowis BK (vì DE vuông góc BK, BC // DE)
=> góc CBK = 90 độ => góc ABK = góc CBA - góc CBA = 90 - 45= 45.
Tam giác BKC có BA vừa là đường cao, vừa là phân giác => BKC cân => AC = AK (đpcm)