K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2018

cho tam giác ABC ( AB<AC) có ba góc nhọc nội tiếp đường tròn tâm (O) và D là hình chiếu của B trên AO sao cho D nằm giữa A và O. gọi M là trung điểm của BC, N là giao điểm của BD và AC, F là giao điểm của MD và AC, E là giao điểm thứ hai của BD với (O), H là giao điểm của BF và AD.

1/ chứng minh tứ giác BDOM nội tiếp và góc MOD + NAE=180. 

2/ chứng minh DF //CE.

3/ chứng minh CA là tia phân giác của góc BCE

4/ Chứng minh HN vuông góc với AB

11 tháng 2 2016

Bạn tự vẽ hình nha 

a) ACD chắn nửa đường tròng => ACD = 90 => ECD = 90 độ 

TG CEFD có ECD + EFD = 90 + 90 = 180 => CEFD nội tiếp 

b), Vì tg CEFD nội tiếp => EFC = CDE ( cùng chắn cung CE )  (1)

ABCD nội tiếp => CDB = BAC ( cùng chắn cug BC ) (2)

CMTT BAFE là tứ giác nội tiếp => BFE = BAE ( cùng chắn cung BE ) hay BAC = BFE  (3)

Từ (1) (2) và (3) => BFE = CFE  

=> BFA = CFD ( cùng phụ hai góc bằng nhau ) mà CFD = AFM => BFA = AFM 

=> FA là tia p/g BFM 

c) VÌ BFE = EFN => EF là tia pg BFN => \(\frac{BF}{FN}=\frac{BE}{EN}\) ( tc đường p/g trong tam giác )

VÌ FA là tia pg BFM => FA là tia p/g góc ngoài của BFN ( Vì  BFM ; BFN là hai góc kề bù )

=> \(\frac{BF}{FN}=\frac{DB}{DN}\left(II\right)\)

Từ (I) và ( II ) => \(\frac{BE}{EN}=\frac{BD}{DN}\Rightarrow BE\cdot DN=BD\cdot EN\)

d)  TAm giác EFD vuông tại F có FK là trung tuyến => FK = KD => KFD cân tại K => KFD = KDF 

MÀ KDF = BCA ( góc nội tiếp cùng chắn cung AB ) => KFD  = BCA 

TAm giác ECD vuông tại C có CK là tiếp tuyến => CK = KD => KCD = KDC  mà CDK = BAC (CMT ) 

=> KCD = BAC  mà EFB = BAC ( CMT ) => KCD = BFE => BFA  = ECK (  cùng phụ hai góc bằng nhau )

TG BCKF có BCK + BFK = BCA + ECK + BFK = BFA + BFK + KFD = AFD  = 180 độ 

=> BCKF là tứ giác nội tiếp 

Xem lại giúp mình nha ...............

2 tháng 2 2016

bài này để mk về nghĩ nhé mai mk trả lời cho 

1. Cho các đường tròn (O;R) và (O';R') tiếp xúc trong với nhau tại A(R>R'). Vẽ đường kính AB của (O) , AB cắt (O') tại điểm thứ hai C. Từ B vẽ tiếp tuyến BP với đường tròn (O'), BP cắt (O) tại Q. Đường thẳng AP cắt (O) tại điểm thứ hai R. Chứng minh:a) AP là phân giác của góc BAQb) CP và BR song song với nhau2. Cho đường tròn (O;R) vơi SA là điểm cố định trên đường tròn. Kẻ tiếp tuyến Ax...
Đọc tiếp

1. Cho các đường tròn (O;R) và (O';R') tiếp xúc trong với nhau tại A(R>R'). Vẽ đường kính AB của (O) , AB cắt (O') tại điểm thứ hai C. Từ B vẽ tiếp tuyến BP với đường tròn (O'), BP cắt (O) tại Q. Đường thẳng AP cắt (O) tại điểm thứ hai R. Chứng minh:
a) AP là phân giác của góc BAQ
b) CP và BR song song với nhau

2. Cho đường tròn (O;R) vơi SA là điểm cố định trên đường tròn. Kẻ tiếp tuyến Ax với (O) và lấy M là điểm bất kì thuộc tia Ax. Vẽ tiếp tuyến thứ hai MB với đường tròn (O). gọi I là trung điểm MA, K là giao điểm của BI với (O)
a) Chứng minh các tam giác IKA và IAB đồng dạng. Từ đó suy ra tam giác IKM đồng dạng với tam giác IMB
b) Giả sử MK cắt (O) tại C. Chứng minh BC song song MA

3. Cho tam giác ABC nội tiếp đường tròn (O) và AB<AC. Đường tròn (I) đi qua B và C, tiếp xúc với AB tại B cắt đường thẳng AC tại D. Chứng minh OA và BD vuông góc với nhau.

4.Cho hai đường tròn (O) và (I) cắt nhau tại C và D, trong đó tiếp tuyến chung MN song song với cát tuyến EDF, M và E thuộc (O), N và F thuộc (I), D nằm giữa E và F. Gọi K ,H theo thứ tự là giao điểm của NC,MC và EF. Gọi G là giao điểm của EM ,FN. Chứng minh:
a) Các tam giác GMN và DMN bằng nhau
b) GD là đường trung trực của KH
Làm ơn giúp mình với !!! Chút nữa là mình đi học rồi !!!! Cảm ơn trước !!!

0