Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn chứng minh tứ giác acdb là hình bình hành =>ac=bd va ac//bd
vi bd=ac ma ac=ae nen ae=bd(1)
vi bd//ac nen bd//ae(2)
tu (1)(2) =>tu giac eadb la hinh binh hanh
ma ed cat ab tai f nen f la trung diem cua ab
Ta có hình vẽ:
Xét tam giác ABC và tam giác ADE có
-A: góc chung
-AB = AD (GT)
-BE = DC (GT)
Vậy tam giác ABC = tam giác ADE (c.g.c)
Xét tam giác ABC và tam giác DCB có:
góc B1= góc C2 ( vì AB//CD)
BC: chung
Góc C1= góc B2 ( vì AC//BD)
=> tam giác ABC= tam giác DCB (g.c.g)
=> AB=CD
a: Xét ΔAMC và ΔDMB có
MA=MD
\(\widehat{AMC}=\widehat{DMB}\)
MC=MB
Do đó: ΔAMC=ΔDMB
b: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
Suy ra: AC//BD
A B C E D M I
Nối A với D
Xét \(\Delta\) ADM và \(\Delta\) CBM có:
MD = MB ( giả thiết )
AMD = CMB ( 2 góc đối đỉnh )
AM = CM ( M là trung điểm của AC )
=> \(\Delta\) ADM = \(\Delta\) CBM ( c . g . c )
=> DA = BC ( 2 cạnh tương ứng ) (1)
=> ADM = CBM ( 2 góc tương ứng )
Mà 2 góc này ở vị trí so le trong của 2 đoạn thẳng AD và BC cắt bởi BD
=> AD // BC
hay AD // BE
=> BAD = ABE ( 2 góc so le trong )
hay IAD = IBE (1)
=> ADE = BED ( 2 góc so le trong)
hay ADI = BEI (2)
Ta có: BE = BC ( theo giả thiết )
Mà DA = BC ( chứng minh (1) )
=> DA = BE (3)
Xét \(\Delta\) IAD và \(\Delta\) IBE có:
IAD = IBE ( chứng minh (1) )
DA = BE ( chứng minh (3) )
ADI = BEI ( chứng minh (2) )
=> \(\Delta\) IAD = \(\Delta\) IBE ( g . c . g )
=> IA = IB (2 cạnh tương ứng )
Vậy IA = IB ( đpcm )
Chuk bn hk tốt !
cảm ơn nhìu lắm, bn là ân nhân của mik