K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét tứ giác AEBC có 

M là trung điểm của đường chéo AB

M là trung điểm của đường chéo CE

Do đó: AEBC là hình bình hành

Suy ra: AE//BC và AE=BC(1)

Xét tứ giác ABCF có 

N là trung điểm của đường chéo AC

N là trung điểm của đường chéo BF

Do đó: ABCF là hình bình hành

Suy ra: AF//BC và AF=BC(2)

Từ (1) và (2) suy ra AE=AF

Ta có: AE//BC

AF//BC

mà AE và AF có điểm chung là A

nên E,A,F thẳng hàng

mà AE=AF

nên A là trung điểm của EF

8 tháng 7 2015

a) Xét tam giác AME và tam giác BMC, có:

            góc AME = góc BMC ( đối đỉnh)

           EM = MC ( giải thiết )

           AM= MB ( M là trung điểm của AB )

\(\Rightarrow\) TAm giác AME = tam giác BMC ( c-g-c)

\(\Rightarrow\)góc AEM = góc BCM ( hai góc tương ứng) 

\(\Rightarrow AE\)//\(BC\) ( đpcm)

 

25 tháng 7 2016

Toán lớp 7Trang 2 nek, z là hết mờ hen^^

25 tháng 7 2016

Toán lớp 7Trang 1 nek

a: Xét tứ giác AEBC có 

M là trung điểm của AB

M là trung điểm của EC

Do đó: AEBC là hình bình hành

Suy ra: AE=BC

b: Xét tứ giác ABCF có 

N là trung điểm của AC

N là trung điểm của BF

Do đó: ABCF là hình bình hành

Suy ra: AF=BC

mà AE=BC

nên AE=FA

a: Xét tứ giác AEBC có 

M là trung điểm của AB

M là trung điểm của EC

Do đó: AEBC là hình bình hành

Suy ra: AE=BC

b: Xét tứ giác ABCF có 

N là trung điểm của AC

N là trung điểm của BF

Do đó: ABCF là hình bình hành

Suy ra: AF=BC

mà AE=BC

nên AE=FA

7 tháng 11 2016

Hình học lớp 7

20 tháng 11 2017

bài 2) 

   Ta có:  16x : 2y = 128

    \(\Leftrightarrow\)24x : 2y = 27

    \(\Leftrightarrow\)24x - y = 27

   \(\Leftrightarrow\)4x - y = 7   (1)

Ta lại có:   x = \(\frac{y}{3}\)\(\Rightarrow\)x = 3y   (2)

Thay (2) vào (1) ta đc: 

            4*3y - y = 7

     \(\Leftrightarrow\)11y = 7

      \(\Leftrightarrow\)y = \(\frac{7}{11}\)

       \(\Rightarrow\)x = \(\frac{7}{11}\): 3 = \(\frac{7}{33}\)

20 tháng 11 2017

3, 

A B C M N E F

a, Xét t/g AME và t/g BMC có:

MA = MB (gt)

ME = MC (gt)

góc AME = góc BMC (đối đỉnh)

Do đó t/g AME = t/g BMC (c.g.c)

b, Vì t/g AME = t/g BMC (câu a) =>  góc AEM = góc BCM (2 góc tương ứng)

Mà góc AEM và góc BCM là hai góc ở vị trí so le trong nên AE // BC

c, Xét t/g ANF và t/g CNB có:

AN = CN (gt)

NF = NB (gt)

góc ANF = góc CNB (đối đỉnh)

Do đó t/g ANF = t/g CNB (c.g.c)

=> AF = BC (2 cạnh tương ứng)

d, Vì t/g ANF = t/g CNB (câu c) => góc AFN = góc NBC (2 góc tương ứng)

Mà góc AFN và góc NBC là hai góc ở vị trí so le trong nên AF // BC

Ta có: AE // BC, AF // BC 

=> AE trùng AF

=> A,E,F thẳng hàng (1)

Vì t/g AME = t/g BMC => AE = BC (2 góc tương ứng)

Ta lại có: AE = BC, AF = BC => AE = AF (2)

Từ (1) và (2) => A là trung điểm của EF

loading...

a: Xét ΔAME và ΔBMC có

MA=MB

\(\widehat{AME}=\widehat{BMC}\)(hai góc đối đỉnh)

ME=MC

Do đó: ΔAME=ΔBMC

b: Xét ΔAFN và ΔCBN có

NA=NC

\(\widehat{ANF}=\widehat{CNB}\)(hai góc đối đỉnh)

NF=NB

Do đó: ΔAFN=ΔCBN

c: ΔAME=ΔBMC

=>\(\widehat{MAE}=\widehat{MBC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AE//BC

d: ΔAME=ΔBMC

=>AE=BC

ΔANF=ΔCNB

=>\(\widehat{NAF}=\widehat{NCB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AF//BC

ΔANF=ΔCNB

=>AF=CB

Ta có: AF=CB

AE=BC

Do đó: AE=AF

Ta có: AE//BC

AF//BC

AE,AF có điểm chung là A

Do đó: E,A,F thẳng hàng

mà AE=AF

nên A là trung điểm của EF

8 tháng 7 2015

Xét tam giác ABC, có: N là trung điểm AC

                                                              }

                                 M là trung điểm AB

=> MN là đườg trung bình tam giác ABC

=> MN//BC                 (1)

Chứng minh tương tự ta có : MN là đường trung bình tam giác AEC

=>         MN //AE                (2)

    {

            MN=1/2AE               (3)

Từ (1) và (2) => AE//BC (đpcm)

b) Xét tam giác ABF, có : M là trung điểm AB

                                                                                   }

                                      N là trung điểm BF (NF=NB)

=> MN là đường trung bình tam giác ABF

=> MN =1/2 AF                   (4)

Từ (3) và (4) => AE = AF

Mà A nằm giữa E và F

=> A là trung điểm của EF. 

Vậy .....................