K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2021

Ta có: A = \(sin\dfrac{A}{2}+sin\dfrac{B}{2}+sin\dfrac{C}{2}=cos\dfrac{B+C}{2}+2sin\dfrac{B+C}{4}cos\dfrac{B-C}{4}\)

\(\Leftrightarrow A-2sin\dfrac{B+C}{4}cos\dfrac{B-C}{4}-cos^2\dfrac{B+C}{4}+sin^2\dfrac{B+C}{4}=0\)\(\Leftrightarrow A-2sin\dfrac{B+C}{4}cos\dfrac{B-C}{4}+2sin^2\dfrac{B+C}{4}-1=0\)

Δ' = \(cos^2\dfrac{B-C}{4}-2\left(A-1\right)\ge0\)

\(\Rightarrow A-1\le\dfrac{1}{2}\Leftrightarrow A\le\dfrac{3}{2}\)

7 tháng 1 2021

tham khảo

https://cungthi.online/cau-hoi/cho-tam-giac-abc-tap-hop-nhung-diem-m-thoaman-4mambmc-30238-1652.html

7 tháng 3 2021

Gọi G là trọng tâm của ΔABC

⇒ \(3\overrightarrow{MG}=\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\)

⇒ \(MA^2+MB^2+MC^{2^{ }}+2VT=9MG^2\)

⇒ VT = 9MG2 - MA2 + MB2 + MC2 

⇒ \(\dfrac{a^2}{6}\) = 9MG2 - MA2 + MB2 + MC2

MA2 + MB2 + MC2 

\(=\left(\overrightarrow{MG}+\overrightarrow{GA}\right)^2+\left(\overrightarrow{MG}+\overrightarrow{GB}\right)^2+\left(\overrightarrow{MG}+\overrightarrow{GC}\right)^2\)

= 3MG2 + 2\(\overrightarrow{MG}\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)\)+ GA2 + GB2 + GC2

= 3MG2\(GA^2+GB^{2^{ }}+GC^2\)

do \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)

Vậy ta có

\(\dfrac{a^2}{6}=6MG^2-GA^2-GB^2-GC^2\) 

\(\dfrac{a^2}{6}+\left(GA^2+GB^2+GC^2\right)=6MG^2\)(1)

Lưu ý, GA,GB,GC lần lượt bằng \(\dfrac{2}{3}\) độ dài các đường trung tuyến kẻ từ A,B,C. Nhưng do ΔABC đều nên chúng sẽ lần lượt bằng \(\dfrac{2}{3}\) đường cao kẻ từ A,B,C (đặt là ha ; hb; hc)

Dễ dàng tìm được ha = hb = hc = \(\dfrac{a\sqrt{3}}{2}\)

⇒ GA = GB = GC = \(\dfrac{a\sqrt{3}}{3}\)

 GA2 = GB2 = GC2 = \(\dfrac{a^2}{3}\)

⇒ GA2 + GB2 + GC2 = a2

Thay vào (1)

\(\dfrac{a^2}{6}+a^2=3MG^2\) ⇔ MG2 = \(\dfrac{7a^2}{18}\)

⇔ MG = \(\dfrac{a\sqrt{14}}{6}\)

Vậy R = \(\dfrac{a\sqrt{14}}{6}\)

Ai xem hộ sai chỗ nào vs

 

 

7 tháng 3 2021

a, 3 đường trung tuyến cách nhau tại trọng tâm, khoảng cách từ trọng tâm đến đỉnh bằng \(\dfrac{2}{3}\) độ dài trung tuyến đi qua đỉnh đó

Từ định lí trên ta có \(\left\{{}\begin{matrix}m_a=\dfrac{2}{3}GA\\m_b=\dfrac{2}{3}GB\\m_c=\dfrac{2}{3}GC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m_a^2=\dfrac{4}{9}GA^2\\m_b^2=\dfrac{4}{9}GB^2\\m_c^2=\dfrac{4}{9}GB^2\end{matrix}\right.\)

Đặt D = GA2 + GB2 + GC2 

⇒ D = ma2 + mb2 + mc2 

⇒ D = \(\dfrac{2\left(a^2+b^2\right)-c^2+2\left(b^2+c^2\right)-a^2+2\left(a^2+c^2\right)-b^2}{4}\)

⇒ D = \(\dfrac{a^2+b^2+c^2}{3}\)

b, cotA = \(\dfrac{cosA}{sinA}=\dfrac{\dfrac{b^2+c^2-a^2}{2bc}}{\dfrac{a}{2R}}=R.\dfrac{b^2+c^2-a^2}{abc}\)

Tương tự ta có

cotB = \(R.\dfrac{a^2+c^2-b^2}{abc}\)

cotC = \(R.\dfrac{a^2+b^2-c^2}{abc}\)

Vậy cotA + cotB + cotC = \(R.\dfrac{a^2+b^2+c^2}{abc}\) (1)

Theo công thức tính diện tích

S = \(\dfrac{abc}{4R}\) ⇒ abc = 4 . S . R

Thế vào (1) ta có

cotA + cotB + cotC = \(R.\dfrac{a^2+b^2+c^2}{4.S.R}=\dfrac{a^2+b^2+c^2}{4S}\)

 

7 tháng 3 2021

a, \(\overrightarrow{GA}=-\dfrac{1}{3}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)

\(\Rightarrow GA^2=\dfrac{1}{9}\left(AB^2+AC^2+2AB.AC.cosA\right)\)

\(=\dfrac{1}{9}\left(c^2+b^2+2bc.cosA\right)\)

\(=\dfrac{1}{9}\left(c^2+b^2+b^2+c^2-a^2\right)=\dfrac{2b^2+2c^2-a^2}{9}\)

Tương tự \(GB^2=\dfrac{2a^2+2c^2-b^2}{9}\)\(GC^2=\dfrac{2a^2+2b^2-c^2}{9}\)

\(\Rightarrow GA^2+GB^2+GC^2=\dfrac{a^2+b^2+c^2}{3}\)

b, \(cotA+cotB+cotC=\dfrac{cosA}{sinA}+\dfrac{cosB}{sinB}+\dfrac{cosC}{sinC}\)

\(=\dfrac{b^2+c^2-a^2}{2bcsinA}+\dfrac{a^2+c^2-b^2}{2acsinB}+\dfrac{a^2+b^2-c^2}{2absinC}\)

\(=\dfrac{b^2+c^2-a^2}{2bcsinA}+\dfrac{a^2+c^2-b^2}{2ac.\dfrac{b}{a}sinA}+\dfrac{a^2+b^2-c^2}{2ab.\dfrac{c}{a}sinA}\)

\(=\dfrac{a}{2sinA}\left(\dfrac{b^2+c^2-a^2}{abc}+\dfrac{a^2+c^2-b^2}{abc}+\dfrac{a^2+b^2-c^2}{abc}\right)\)

\(=\dfrac{a^2+b^2+c^2}{2bcsinA}=\dfrac{a^2+b^2+c^2}{4.S}\)

27 tháng 2 2021

B

27 tháng 2 2021

Đáp án B nha

Ta có:

\(r^2+p^2+4Rr=\left(\dfrac{S}{p}\right)^2+p^2+\dfrac{abc}{S}.\dfrac{S}{p}\)

\(=\dfrac{\left(p-a\right)\left(p-b\right)\left(p-c\right)}{p}+p^2+\dfrac{abc}{p}\)

\(=\dfrac{p^3+\left(ab+bc+ac\right)p-p^2\left(a+b+c\right)-abc+p^3+abc}{p}\)

\(=ab+bc+ca\)

Do đó:

\(\dfrac{ab+bc+ca}{4R^2}=\dfrac{r^2+p^2+4Rr}{4R^2}\)

\(\Leftrightarrow sinAsinB+sinBsinC+sinCsinA=\dfrac{r^2+p^2+4Rr}{4R^2}\)\(\left(đpcm\right)\)

 

20 tháng 10 2023

bạn giải thích chi tiết đoạn này hộ mình được ko ạ

p^3+(ab+bc+ac)p−p^2(a+b+c)−abc+p^3+abc/p

 =ab+bc+ca

Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính bán...
Đọc tiếp

Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC

 Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.

Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính bán kính đường tròn ngoại tiếp ∆MBC.

Bài 13:Cho ABC có 0 0 A B b = = = 60 , 45 , 2 tính độ dài cạnh a, c, bán kính đường tròn ngoại tiếp và diện tích tam giác ABC

Bài 14:Cho ABC AC = 7, AB = 5 và 3 cos 5 A = . Tính BC, S, a h , R, r.

Bài 15:Cho ABC có 4, 2 m m b c = = và a =3 tính độ dài cạnh AB, AC.

Bài 16:Cho ABC có AB = 3, AC = 4 và diện tích S = 3 3 . Tính cạnh BC

Bài 17:Cho tam giác ABC có ˆ o A 60 = , c h 2 3 = , R = 6. a) Tính độ dài các cạnh của ∆ABC. b) Họi H là trực tâm tam giác ABC. Tính bán kính đường tròn ngoại tiếp ∆AHC.

Bài 18:a. Cho ABC biết 0 0 a B C = = = 40,6; 36 20', 73 . Tính BAC , cạnh b,c. b.Cho ABC biết a m = 42,4 ; b m = 36,6 ; 0 C = 33 10' . Tính AB, và cạnh c.

Bài 19:Tính bán kính đường tròn nội tiếp ABC biết AB = 2, AC = 3, BC = 4.

Bài 20:Cho ABC biết A B C (4 3; 1 , 0;3 , 8 3;3 − ) ( ) ( ) a. Tính các cạnh và các góc của ABC b. Tính chu vi và diện tích ABC

0
19 tháng 1 2021

a, Áp dụng BĐT Cosi:

\(\sqrt{\left(p-a\right)\left(p-b\right)}\le\dfrac{p-a+p-b}{2}=\dfrac{c}{2}\)

\(\sqrt{\left(p-b\right)\left(p-c\right)}\le\dfrac{p-b+p-c}{2}=\dfrac{a}{2}\)

\(\sqrt{\left(p-c\right)\left(p-a\right)}\le\dfrac{p-c+p-a}{2}=\dfrac{b}{2}\)

\(\Rightarrow\left(p-a\right)\left(p-b\right)\left(p-c\right)\le\dfrac{1}{8}abc\)

19 tháng 1 2021

b, \(\dfrac{r}{R}=\dfrac{\dfrac{S_{ABC}}{p}}{\dfrac{abc}{4S_{ABC}}}\)

\(=\dfrac{4S_{ABC}^2}{p.abc}=\dfrac{4.p\left(p-a\right)\left(p-b\right)\left(p-c\right)}{p.abc}\)

\(\le\dfrac{4.p.\dfrac{1}{8}abc}{p.abc}=\dfrac{1}{2}\)

Chọn B