K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2016

2S(ABC)=ha.a=hb.b=hc.c suy ra 1/ha+1/hb+1/hc=a/2S+b/2S+c/2S=1/2S .(a+b+c)=1/r(a+b+c) .(a+b+c) =1/r (đpcm) (vì 2S=r(a+b+c))

25 tháng 10 2016

cảm ơn bạn nhiều

a: Xét (O) có

AB,AC là tiếp tuyến

nên AB=AC

mà OB=OC

nên OA là trung trực của BC

=>OA vuông góc BC tại H

b: Xét ΔOBA vuông tại B có BH là đường cao

nên OH*OA=OB^2=OA^2-AB^2

15 tháng 7 2021

Ta có : \(\dfrac{HB}{HC}=\dfrac{1}{4}\Rightarrow HB=\dfrac{1}{4}HC\)

Xét tam giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức : 

\(AH^2=HB.HC=\left(\dfrac{1}{4}HC\right)HC\Rightarrow256=\dfrac{1}{4}HC^2\)

\(\Leftrightarrow HC^2=1024\Leftrightarrow HC=32\)cm 

\(\Rightarrow HB=\dfrac{1}{4}.32=8\)cm 

=> BC = HB + HC = 32 + 8 = 40 cm 

* Áp dụng hệ thức : \(AB^2=BH.BC=8.40=320\Rightarrow AB=8\sqrt{5}\)cm 

* Áp dụng hệ thức : \(AC^2=CH.BC=32.40=1280\Rightarrow AC=16\sqrt{5}\)cm 

Chu vi tam giác ABC là : 

\(P_{ABC}=AB+AC+BC=24\sqrt{5} +40\)cm 

Ta có: \(\dfrac{HB}{HC}=\dfrac{1}{4}\)

nên \(HB=\dfrac{1}{4}HC\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(HB\cdot HC=AH^2\)

\(\Leftrightarrow HC\cdot\dfrac{1}{4}\cdot HC=14^2=196\)

\(\Leftrightarrow HC^2=196:\dfrac{1}{4}=196\cdot4=784\)

hay HC=28(cm)

\(\Leftrightarrow HB=\dfrac{1}{4}\cdot HC=\dfrac{1}{4}\cdot28=7\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=7\cdot35=245\\AC^2=28\cdot35=980\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}AB=7\sqrt{5}\left(cm\right)\\AC=14\sqrt{5}\left(cm\right)\end{matrix}\right.\)

Chu vi tam giác ABC là:

\(C_{ABC}=AB+AC+BC=7\sqrt{5}+14\sqrt{5}+35=35+21\sqrt{5}\left(cm\right)\)