Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :b )\(\Delta ABD=\Delta ACE\) a ) AM vuông góc với BC c )\(\Delta ACD=\Delta ABE\) d ) AM là tia phân giác của góc DAEBài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .a ) Chứng minh BD...
Đọc tiếp
Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :
b )\(\Delta ABD=\Delta ACE\) a ) AM vuông góc với BC
c )\(\Delta ACD=\Delta ABE\) d ) AM là tia phân giác của góc DAE
Bài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .
a ) Chứng minh BD = DE
b ) Kéo dài AB và DE cắt nhau tại K. Chứng minh góc AKD bằng góc ACD .
c ) Chứng minh \(\Delta KBE=\Delta CEB\)
d ) Tìm điều kiện của tam giác ABC để DE vuông góc với AC .
Bài 7 Cho tam giác ABC , P là trung điểm của AB . Đường thẳng qua P và song song với BC cắt AC ở đường thẳng qua Q và song song với AB cắt BC ở F. Chứng minh rằng :
a ) AP = QF
b ) \(\Delta APQ=\Delta QFC\)
c ) Q là trung điểm của AC
d ) Lấy điểm I thuộc tia đối của tia QP sao cho QI = QP . Chứng minh CI // AB
Bài 8 : Cho đoạn thẳng AB . Trên hai nửa mặt phẳng đối nhau bờ AB , kẻ tia Ax và By cùng vuông góc với AB . Trên tia Ax , By lần lượt lấy hai điểm C , D sao cho AC = BD .
a ) Chứng minh AD = BC
. b ) Chứng minh AD // BC .
c ) Gọi 0 là trung điểm của AB . Trên BC lấy điểm E , trên AD lấy điểm F sao cho CE = DF . Chứng minh ( là trung điểm của EF .
Mình đang cần gấp ạ
a) Ta có: AB=AC(ΔABC cân tại A)
mà \(BD=\frac{1}{3}AB\)(gt)
và \(CE=\frac{1}{3}AC\)(gt)
nên BD=CE(đpcm)
b) Xét ΔBDC và ΔCEB có
BD=CE(cmt)
\(\widehat{DBC}=\widehat{ECB}\)(ΔABC cân tại A)
BC chung
Do đó: ΔBDC=ΔCEB(c-g-c)
⇒\(\widehat{BDC}=\widehat{CEB}\)(hai góc tương ứng)
hay \(\widehat{BDI}=\widehat{CEI}\)(1)
Xét ΔDIB có \(\widehat{DIB}+\widehat{BDI}+\widehat{DBI}=180^0\)(định lí tổng ba góc trong một tam giác)(2)
Xét ΔEIC có \(\widehat{EIC}+\widehat{CEI}+\widehat{ECI}=180^0\)(định lí tổng ba góc trong một tam giác)(3)
mà \(\widehat{DIB}=\widehat{EIC}\)(hai góc đối đỉnh)(4)
nên từ (1), (2), (3) và (4) suy ra \(\widehat{DBI}=\widehat{ECI}\)
Xét ΔDIB và ΔEIC có
\(\widehat{DBI}=\widehat{ECI}\)(cmt)
DB=EC(cmt)
\(\widehat{BDI}=\widehat{CEI}\)(cmt)
Do đó: ΔDIB=ΔEIC(g-c-g)
⇒IB=IC(hai cạnh tương ứng)
Xét ΔIBC có IB=IC(cmt)
nên ΔIBC cân tại I(định nghĩa tam giác cân)