Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Xét tam giác AHB và tam giác AHC có
AB = AC ( giả thiết )
H1 = H2 ( = 90)
Ah chung
tam giác AHB = tam giác AHC ( c.g.c)
b, từ a, suy ra
- BH=HC (2 cạnh tương ứng)
- góc BAH=góc CAH (2 góc tương ứng)
c,Xét tam giác HKB và tam giác HIC có
HB = HC (từ câu b)
góc B = góc C (2 góc tương ứng)
Suy ra tam giác HKB = tam giác HIC (ch.gn)
Mik chỉ lm đc đến đây thôi còn câu d, mik ko bt lm
![](https://rs.olm.vn/images/avt/0.png?1311)
Bạn tự vẽ hình nhá.
a, Vì tam giác ABC cân tại A nên AB = AC và \(\widehat{ABC}=\widehat{ACB}\)
Xét tam giác AHB vuông tại H và tam giác AHC vuông tại H , có:
AB = AC (gt)
AH là cạnh chung
=> Tam giác AHB = Tam giác AHC ( cạnh huyền - cạnh góc vuông )
b, Vì Tam giác AHB = Tam giác AHC nên HB = HC ( hai cạnh tương ứng )
và \(\widehat{BAH}=\widehat{CAH}\) ( hai góc tương ứng )
c, Vì Tam giác AHB = Tam giác AHC nên \(\widehat{ABH}=\widehat{ACH}\) hay \(\widehat{KBH}=\widehat{ICH}\)
Xét tam giác HKB vuông tại K và tam giác HIC vuông tại I, có:
HB = HC ( cmt )
\(\widehat{KBH}=\widehat{ICH}\)
=> Tam giác HKB = Tam giác HIC ( cạnh huyền - góc nhọn )
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét tgAHB và tg AHC có:
+AB=AC(gt)
+AH là cạnh chung
+góc BHA=góc CHA
=>tgAHB=tg AHC(c-g-c)
=>HB=HC,góc BAH=góc CAH
Các cặp tg vuông là:
BEH-HFC,VÌ HE và HC là 2 đường cao=>tgBEH và tgCFH là cặp tg vuông(g-c-g)
Gọi k là giao điểm của HA và EF,=>tgEHF là tg cân=>góc HEF=góc EFH=>EK=EF
=>MÀ AB=AC,EB=FC=>AE=AF=>Tg AEF là tg cân=>AK cũng là đường CAO
=> tgAEK và tg AFK là cặp tg vuông(c-g-c)
=>tg EKH Và tg EFH là cặp tg vuông(g-c-g)
=>tg AEH và tg AFH là cặp tg vuông(c-g-c)
Và cuối cùng là tg ABH và tg ACH(c-g-c)
+vì EF vuông góc với KH(cmt)và BC cũng vuông góc với KH=>EF//BC(ĐPCM)
a, Xét tam giác AHB và tam giác AHC có:
AH chung
AB=AC (tam giác ABC cân tại A)
Vậy tam giác AHB= tam giác AHC (cạnh huyền-góc nhọn)
b,từ CMT: ta có:
HB=HC
Góc BAH= góc CAH
c,tam giác AHF=tam giác AHE(cạnh huyền AH chung,góc nhọn BAH =góc nhọn CAH)
tam giác AHC= tam giác AHB(cạnh huyền AH chung, góc nhọn BAH =góc nhọn CAH)
tam giác BEH =tam giác HFC(cạnh huyền BH=CH, góc nhọn EBH = góc nhọn FCH)
d,sorry bạn, câu này mik ko làm đc
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét ΔABH vuông tại H và ΔACH vuông tại H có AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C D E H
a, Xét \(\Delta ABH\) và\(\Delta ACH\) CÓ:
\(AHchung\)
AB = AC
\(\widehat{AHB}=\widehat{AHC}\)
\(\Rightarrow\Delta ABH=\Delta ACH\)(cạnh huyền cạnh góc vuông)
=> BH = HC ( 2 cạnh tương ứng )
b,Do BC = 8cm => BH = 4cm
Áp dụng định lý Py ta go vào tam giác vuông ABH có :
\(AH^2+BH^2=AB^2\)
\(\Rightarrow AH^2=AB^2-BH^2\)\(\Rightarrow AH^2=5^2-4^2=25-16=9\)\(\Rightarrow AH=3\left(cm\right)\)
c,\(Xét\Delta DBH\) và\(\Delta ECH\) có :
\(\widehat{ABH}=\widehat{ACH}\)
BH = HC
\(\widehat{BDH}=\widehat{CEH}\)
\(\Rightarrow\Delta DBH=\Delta ECH\)\(\Rightarrow DH=EH\)=> \(\Delta DHE\) cân tại H
cho mình 1 tym nha
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét \(\Delta ABH\)và \(\Delta AHC\)có:
AB = AC (gt)
\(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)
\(\Rightarrow\Delta ABH=\Delta AHC\left(Ch-gn\right)\)
\(\Rightarrow HB=HC\)(2 cạnh tương ứng)
\(\Rightarrow\widehat{BAH}=\widehat{HAC}\)
b) Ta có : HB=HC (cma )
Mà HB + HC = BC
=> HB = HC = 4 cm
Xét \(\Delta ABH\)vuông tại H có : AB2=HA2+BH2 (Pytago)
=> AH2 = AB2 - HB2
=> AH2 = 52 - 42 = 9
=> AH = 3 (cm)
c) Xét \(\Delta HBD\)và \(\Delta HEC\)có:
HB = HC (cma)
\(\widehat{HDB}=\widehat{HEC}\left(=90^o\right)\)
=> \(\Delta HBD=\Delta HEC\left(Ch-gn\right)\)
=> HD = HC ( 2 cạnh tương ứng)
=> \(\Delta HDE\)cân tại H
a) Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC(ΔABC cân tại A)
AH là cạnh chung
Do đó: ΔAHB=ΔAHC(cạnh huyền-cạnh góc vuông)
b) Ta có: ΔAHB=ΔAHC(cmt)
⇒HB=HC(hai cạnh tương ứng)(đpcm)
Ta có: ΔAHB=ΔAHC(cmt)
⇒\(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)(đpcm)
c) Xét ΔHKB vuông tại K và ΔHIC vuông tại I có
BH=CH(cmt)
\(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔHKB=ΔHIC(cạnh huyền-góc nhọn)
d) Ta có: AK+KB=AB(K nằm giữa A và B)
AI+IC=AC(I nằm giữa A và C)
mà AB=AC(ΔABC cân tại A)
và KB=IC(ΔHKB=ΔHIC)
nên AK=AI
Xét ΔAKI có AK=AI(cmt)
nên ΔAKI cân tại A(định nghĩa tam giác cân)
⇒\(\widehat{AKI}=\frac{180^0-\widehat{A}}{2}\)(số đo của một góc ở đáy trong ΔAKI cân tại A)(1)
Ta có: ΔABC cân tại A(gt)
⇒\(\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\)(số đo của một góc ở đáy trong ΔABC cân tại A)(2)
Từ (1) và (2) suy ra \(\widehat{AKI}=\widehat{ABC}\)
mà \(\widehat{AKI}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị
nên KI//BC(dấu hiệu nhận biết hai đường thẳng song song)(đpcm)
Mình đăng một bài nữa bạn làm gips minh nha