K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2016

GIẢI THẾ NÀO?

 

16 tháng 1 2016

SORRY. MÌNH THIẾU. BD LÀ PHÂN GIÁC CỦA GÓC B. TÍNH DC

 

Áp dụng định lí : Trong 1 tam giác cân đường phân giác ứng với cạnh đáy đồng thời là đường trung trực , đường cao.
=> AB= AC = 20cm AD vuông góc với BC và BD = CD
Vì BD + CD = BC BD + CD = 5cm
Mà BD = CD = 5/2 = 2,5 cm
Áp dụng định lí Py ‐ ta ‐ go cho tam giác vuông ABD có :
AB 2 = BD 2 + AD 2
=> 20 2 = BD 2 + 2,5 2
=> 400 = BD 2 + 6,25
=> BD 2 = 400 ‐ 6,25 = 393,75
=> BD = căn 393 ,75

#Học tốt#

25 tháng 2 2022

-Xét △ABC có: BD, CE lần lượt là các đường phân giác (gt)

\(\Rightarrow\dfrac{BE}{AE}=\dfrac{BC}{AC};\dfrac{DC}{AD}=\dfrac{BC}{AB}\) (định lí đường phân giác trong tam giác)

Mà \(AB=AC\) (△ABC cân tại A)

\(\Rightarrow\dfrac{BE}{AE}=\dfrac{DC}{AD}\) nên DE//BC (định lí Ta-let đảo)

\(\Rightarrow\dfrac{AB}{AE}=\dfrac{BC}{DE}=\dfrac{8}{5}\) (định lí Ta-let)

\(\Rightarrow\dfrac{AB}{AE}-1=\dfrac{8}{5}-1\)

\(\Rightarrow\dfrac{BE}{AE}=\dfrac{3}{5}\) mà \(\dfrac{BE}{AE}=\dfrac{BC}{AC}\left(cmt\right)\)

\(\Rightarrow\dfrac{BC}{AC}=\dfrac{3}{5}\)

\(\Rightarrow AC=AB=\dfrac{5.BC}{3}=\dfrac{5.8}{3}=\dfrac{40}{3}\left(cm\right)\)

 

a) Xét ΔAHE vuông tại E và ΔABD vuông tại D có 

\(\widehat{EAH}\) chung

Do đó: ΔAHE\(\sim\)ΔABD(g-g)

Suy ra: \(\dfrac{AH}{AB}=\dfrac{AE}{AD}\)

hay \(AB\cdot AE=AH\cdot AD\)

b) Xét ΔEHA vuông tại E và ΔEBC vuông tại E có 

\(\widehat{AHE}=\widehat{CBE}\)(ΔAHE\(\sim\)ΔABD)

Do đó: ΔEHA\(\sim\)ΔEBC(g-g)

Suy ra: \(\dfrac{EH}{EB}=\dfrac{EA}{EC}\)

hay \(EA\cdot EB=EH\cdot EC\)

 

d) Ta có: ΔABC cân tại A(gt)

mà AD là đường cao ứng với cạnh đáy BC(Gt)

nên AD là đường trung tuyến ứng với cạnh BC

Suy ra: \(BD=DC=\dfrac{BC}{2}=\dfrac{6}{2}=3\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABD vuông tại D, ta được:

\(AD^2+BD^2=AB^2\)

\(\Leftrightarrow AD^2=5^2-3^2=16\)

hay AD=4(cm)

Xét ΔBEC vuông tại E và ΔBDA vuông tại D có 

\(\widehat{B}\) chung

Do đó: ΔBEC\(\sim\)ΔBDA(g-g)

Suy ra: \(\dfrac{BE}{BD}=\dfrac{BC}{BA}\)

\(\Leftrightarrow BE=\dfrac{6\cdot3}{5}=\dfrac{18}{5}=3.6\left(cm\right)\)

Áp dụng định lí Pytago vào ΔBEC vuông tại E, ta được:

\(BC^2=BE^2+EC^2\)

\(\Leftrightarrow EC^2=6^2-3.6^2=23.04\)

hay EC=4,8(cm)

16 tháng 1 2016

BAN CÓ BIẾT LÀM BÀI CỦA MÌNH KO

 

5 tháng 3 2020

A D E F B C

a) Áp dụng định lí Ta-lét trong \(\Delta ABC\left(DE//BC\right)\)có : 

\(\frac{AD}{AB}=\frac{DE}{BC}\Rightarrow\frac{AD}{AD+BD}=\frac{6}{16}\Rightarrow\frac{AD}{AD+10}=\frac{3}{8}\)

\(\Rightarrow8AD=3\left(AD+10\right)\Rightarrow8AD=3AD+30\Rightarrow8AD-3AD=30\)

\(\Rightarrow5AD=30\Rightarrow AD=\frac{30}{5}=6\)( cm )

b) Lấy \(F\in BC\)sao cho FC = 6cm, kẻ DF

Vì \(F\in BC\Rightarrow BF+FC=BC\)\(\Rightarrow BF+6=16\Rightarrow BF=16-6=10\)( cm )

Xét tứ giác DECF có :\(F\in BC;DE//BC\left(gt\right)\Rightarrow DE//FC\)mà \(DE=FC\left(=6cm\right)\)

\(\Rightarrow\)Tứ giác DECF là hình bình hành ( dhnb 3 ) \(\Rightarrow DF//EC\)( tính chất hình bình hành )

Hay \(DF//AC\left(E\in AC\right)\)

Áp dụng định lí Ta-lét trong \(\Delta ABC\left(DF//AC\right)\)có : 

\(\frac{BD}{AB}=\frac{BF}{BC}\)Mà lại có : \(BF=BD\left(=10cm\right)\)( cmt )

\(\Rightarrow AB=BC\Rightarrow\Delta ABC\)cân tại B ( Định nghĩa t/g cân )

** : Xin lỗi vì vẽ hình xấu nên khó nhìn, cậu hãy dùng phần chứng minh để dựng hình sao cho chuẩn nhất nhé !