Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔABC vuông tại A
=>\(\widehat{B}+\widehat{C}=90^0\)
=>\(\widehat{B}=90^0-60^0=30^0\)
Xét ΔABC vuông tại A có
\(sinC=\dfrac{AB}{BC}\)
=>\(\dfrac{6}{BC}=sin60=\dfrac{\sqrt{3}}{2}\)
=>\(BC=4\sqrt{3}\)
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2+36=48\)
=>\(AC^2=12\)
=>\(AC=2\sqrt{3}\)
b: Đề sai rồi bạn
Bài 2:
a: \(BC=\sqrt{9^2+12^2}=15\)
Xét ΔABC vuông tại A có \(\sin B=\dfrac{AC}{BC}=\dfrac{12}{15}=\dfrac{4}{5}\)
nên \(\widehat{B}\simeq53^0\)
=>\(\widehat{C}\simeq37^0\)
b: Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
=>BD/3=CD/4
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{15}{7}\)
Do đó; BD=45/7(cm); CD=60/7(cm)
c: Xét tứ giác AEDF có \(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)
nên AEDF là hình chữ nhật
mà AD là phân giác của góc FAE
nên AEDF là hình vuông
AB = BH . BC = 9.BH
mà BH = \(\dfrac{1}{2}AB\) => AB = 4,5 . AB
=> AB= 4,5
=> BH = 2,25 => HC = 6,75
Tam giác ABH vuông tại H =>AH=\(\dfrac{9\sqrt{3}}{4}\)
Tam giác AHC vuông tại H => AC=\(\dfrac{9\sqrt{3}}{2}\)
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
\(AH=\dfrac{5\cdot12}{13}=\dfrac{60}{13}\left(cm\right)\)
b: Xét ΔAHB vuông tai H có HE là đường cao
nên \(AE\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HF là đường cao
nên \(AF\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)
c:Ta có \(AE\cdot AB=AF\cdot AC\)
nên AE/AC=AF/AB
Xét ΔAEF và ΔACB có
AE/AC=AF/AB
góc BAC chung
Do đo: ΔAEF đồng dạng với ΔACB