K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2018

Đáp án A.

Gọi số cần tìm có dạng a b c d  vì chia hết cho 6

⇒ d = { 2 , 4 , 6 , 8 } a + b + c + d : 3

Khi đó, chọn d có 4 cách chọn, b và c đều có 9 cách chọn (từ 1 → 9).

 +) Nếu a + b + c + d : 3 thì a = {3,6,9} => có 3 cách chọn a.

+) Nếu a + b + c + d : 3 dư 1 thì a = {2,5,8} => có 3 cách chọn a.

+) Nếu a + b + c + d : 3 dư 2 thì a = {1,4,7} => có 3 cách chọn a.

Suy ra a chỉ có 3 cách chọn => có 4.9.9.3 = 972 số chia hết cho 6.

Vậy xác suất cần tính là P =  972 9 4 = 4 27 .

23 tháng 12 2018

Chọn A

+ Ta có 

Ta có d có 4 cách chọn {2;4;6;8}, a có 9 cách chọn, b có 9 cách chọn. Vì a + b + d  khi chia cho 3 có 3 khả năng số dư 

{0;1;2}, mà  nên c có 3 cách chọn.

Ta có: 

Xác suất cần tìm là: 

17 tháng 4 2023

C?

16 tháng 3 2017


21 tháng 5 2018

Chọn A

+) Không gian mẫu  Ω  = “Chọn ngẫu nhiên một số trong các số tự nhiên có 3 chữ số”.=> | Ω | = 9. 10 2

+) Biến cố A = “Số tự nhiên được chọn chia hết cho 9 và các chữ số đôi một khác nhau”.

Ta tìm số các số tự nhiên gồm 3 chữ số khác nhau và chia hết cho 9 (tổng các chữ số là một số chia hết cho 9). 

Bộ ba số (a;b;c) với a,b,c ∈ [0;9](a,b,c đôi một khác nhau ) và a + b + c = 9m, m ∈ ℕ *   được liệt kê dưới đây:

Vậy có tất cả 10.3! + 4.2.2! = 76 =>  | Ω A | = 76

Xác suất cần tính bằng 

7 tháng 2 2019

3 tháng 11 2019

Đáp án B.

Số phần tử của E.

Từ 5 chữ số đã cho ta có 4 bộ gồm 3 chữ số có tổng chia hết cho 3 là . Mỗi bộ 3 chữ số này ta lập được số thuộc tập hợp E. Vậy trong tập hợp E có số chia hết cho 3.

Gọi A là biến cố “Số được chọn từ E chia hết cho 3” thì .

Vậy xác suất cần tính là .

2 tháng 12 2022

Số các số có `8` chữ số đôi một khác nhau là `9.A_9^7`(số)

`=> n(A) = n(\Omega) = 9.A_9^7`

Dễ thấy rằng `0 + 1 + 2 + .. + 9 = 45 \vdots 9`

Gọi `X = {0;1;..;9}`

Để số đó chia hết cho `8` thì nó phải được chọn từ các tập 

`X \\ {0;9}` , `X \\ {1;8}` , `X \\ {2;7}` , `X \\ {3;6}` , `X \\ {4;5}` 

Ta xét `2` trường hợp như sau:

Trường hợp `1`: Số đó được chọn từ tập `X \\ {0;9}` 

Xếp `8` số vào `8` vị trí có `8!`(cách)

Trường hợp `2`:Số đó được chọn từ `4` tập còn lại

Chọn `1` trong `4` tập có `C_4^1`(cách)

Xếp `8` chữ số vừa chọn `1` cách ngẫu nhiên có `8!`(cách)

Cho số `0` đứng đầu xếp `7` số còn lại có `7!` cách

Số lập được:`4(8!-7!)`(số)

Gọi `B` là biến cố chọn được số chia hết cho `9` từ tập `A`

`=> |B| = 8! + 4(8!-7!)`

Xác xuất biến cố `B`:

`P(B) = \frac{8!+4(8!-7!)}{9.A_9^7} = \frac{1}{9}`

12 tháng 4 2017