\(\sqrt{2x+1}\) = 2(x - 3)\(^2\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2023

Giải phương tình: \(x+\sqrt{2x-1}=2\left(x-3\right)^2\)

Điều kiện: \(x\ge\dfrac{1}{2}\)

\(PT\Leftrightarrow\sqrt{2x-1}-3=2x^2-13x+15\\ \Leftrightarrow\dfrac{2x-10}{\sqrt{2x-1}-3}=\left(x-5\right)\left(2x-3\right)\\ \Leftrightarrow\left(x-5\right)\left(\dfrac{2}{\sqrt{2x-1}+3}-2x+3\right)=0\\ \Leftrightarrow\begin{matrix}x=5\\\dfrac{2}{\sqrt{2x-1}+3}=2x-3\left(1\right)\end{matrix}\)

\(\left(1\right)\Leftrightarrow\left(2x-3\right)\left(\sqrt{2x-1}+3\right)=2\)

Đặt \(t=\sqrt{2x-1},t>0\) phương trình trở thành \(\left(t^2-2\right)\left(t+3\right)=2\\ \)

\(\Leftrightarrow\left[{}\begin{matrix}t=-2\left(L\right)\\t=\dfrac{-1-\sqrt{17}}{2}\\t=\dfrac{-1+\sqrt{17}}{2}\end{matrix}\right.\left(L\right)\)

Với \(t=\dfrac{-1+\sqrt{17}}{2}\) ta có \(\sqrt{2x-1}=\dfrac{-1+\sqrt{17}}{2}\)

\(\Leftrightarrow2x-1=\dfrac{9-\sqrt{17}}{2}\)

\(\Leftrightarrow x=\dfrac{11-\sqrt{17}}{4}\)

Vậy \(E=\left\{5;\dfrac{11-\sqrt{17}}{4}\right\}\)

2 tháng 4 2017

a) A = {0, 3, 6, 9, 12, 15, 18}.

b) B = {x ∈ N / x = n(n+1), n ∈ N, 1 ≤ n ≤ 5}.

c) Tự thực hiện

1: A=[-3;6)

C={1;3}

2: B\(\cap\)C={1}

A\B=[-3;-1)

NV
28 tháng 8 2020

3.

\(\left|2x-4\right|< 10\Leftrightarrow-10< 2x-4< 10\)

\(\Leftrightarrow-3< x< 7\)

\(\Rightarrow C=\left(-3;7\right)\)

\(\left|-3x+5\right|>8\Rightarrow\left[{}\begin{matrix}-3x+5>8\\-3x+5< -8\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x< -1\\x>\frac{13}{3}\end{matrix}\right.\) \(\Rightarrow D=\left(-\infty;-1\right)\cup\left(\frac{13}{3};+\infty\right)\)

\(\Rightarrow C\cap D=\left(-3;-1\right)\cap\left(\frac{13}{3};7\right)\)

\(\Rightarrow\left(C\cap\right)D\cup E=\left(-3;7\right)\)

4.

Hình như cái đề chẳng liên quan gì đến đáp án hết :)

NV
28 tháng 8 2020

1.

\(A\cap B\ne\varnothing\Leftrightarrow\left\{{}\begin{matrix}2m-1\le m+2\\2m+3\ge m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\le3\\m\ge-3\end{matrix}\right.\) \(\Rightarrow-3\le m\le3\)

2.

\(\frac{5}{\left|2x-1\right|}>2\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{1}{2}\\\left|2x-1\right|< \frac{5}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{1}{2}\\-\frac{5}{2}< 2x-1< \frac{5}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{1}{2}\\-\frac{3}{4}< x< \frac{7}{4}\end{matrix}\right.\)

Rất tiếc tập này không thể liệt kê được (có vô số phần tử)

AH
Akai Haruma
Giáo viên
29 tháng 8 2018

Bài 1:

a) \(\Delta=(1-\sqrt{3})^2-4(\sqrt{3}-2)=12-6\sqrt{3}>0\) nên pt có nghiệm.

Mệnh đề A sai.

b)

\(x^2-x+\frac{1}{4}=(x-\frac{1}{2})^2\geq 0, \forall x\in\mathbb{R}\)

\(\Rightarrow x^2\geq x-\frac{1}{4} , \forall x\in\mathbb{R}\). Mệnh đề B đúng.

c) Sai, $2017$ chỉ có ước là 1 và chính nó nên là số nguyên tố.

d) \(x^2+y^2-\frac{3}{2}y+\frac{3}{4}-xy=(x^2+\frac{y^2}{4}-xy)+\frac{3}{4}y^2-\frac{3}{2}y+\frac{3}{4}\)

\(=(x-\frac{y}{2})^2+\frac{3}{4}(y^2-2y+1)=(x-\frac{y}{2})^2+\frac{3}{4}(y-1)^2\)

\(\geq 0+\frac{3}{4}.0=0\) với mọi $x,y$

\(\Rightarrow x^2+y^2-\frac{3}{2}y+\frac{3}{4}\geq xy\)

Mệnh đề đúng.

29 tháng 8 2018

còn bài 2 giải sao thầy

25 tháng 8 2019

TL:

\(x\in\left\{5;1\right\}\)

25 tháng 8 2019

TB rõ ra đc k ạ @Nguyễn Văn Tuấn Anh

19 tháng 7 2019

\(G=\left\{X\inℤ|X=\frac{3k-2}{k+1},k\inℤ\right\}\)

\(G=\left\{2;4;-2;8\right\}\)