K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2016

3*4*4*4*4*4=3072 9 số

b)2*4*4*4*4*4=2048 số

20 tháng 10 2016

gọi số cần tìm là abcdef (a#0 ; a;b;c;d;e;f € A ; f chẵn )

f có 3 cách chọn

a có 5 cách chọn lọc

b;c;d;e đều có 6 cách chọn

 

=> có 3*5*6*6*6*6 = 19440 số thỏa mãn yêu cầu bài toán

b) gọi số cần tìm là abcdef (a#0;f=0,5 ; a;b;c;d;e;f € A )

f=0,5 => f có 2 cách chọn

a có 5 cách chọn

b;c;d;e đều có 6 cách chọn

=> có 2*5*6*6*6*6 = 12960

14 tháng 3 2018

Chọn C

Số có bốn chữ số có dạng : a b c d ¯

( a≠0,a,b,c,d∈ E={0,1,2,3,4,5})

Do  a b c d ¯  không chia hết cho 5 nên có 4 cách chọn d( là 1,2,3,4)

Chọn a ∈ E\{0,d} nên có 4 cách chọn a

Chọn b ∈ E\{a,d} nên có 4 cách chọn b

Chọn c ∈ E\{a,b,d} nên có 3 cách chọn c

Theo quy tắc nhân, có 4*4*4*3=192 số

23 tháng 8 2021

Số tự nhiên đó có dạng \(\overline{abcde}\)

a, a có 5 cách chọn.

b có 5 cách chọn.

c có 4 cách chọn.

d có 3 cách chọn.

e có 2 cách chọn.

\(\Rightarrow\) Có \(5.5.4.3.2=600\) số thỏa mãn.

b, TH1: \(e=0\)

a có 5 cách chọn.

b có 4 cách chọn.

c có 3 cách chọn.

d có 2 cách chọn.

\(\Rightarrow\) Có \(5.4.3.2=120\) số thỏa mãn.

TH2: \(e\ne0\)

a có 5 cách chọn.

e có 2 cách chọn.

b có 4 cách chọn.

c có 3 cách chọn.

d có 2 cách chọn.

\(\Rightarrow\) Có \(5.4.3.2.2=240\) số thỏa mãn.

Vậy có \(120+240=360\) số tự nhiên thỏa mãn yêu cầu bài toán.

c, TH1: \(e=0\Rightarrow\) có 120 số thỏa mãn.

TH2: \(e=5\)

a có 4 cách chọn.

b có 4 cách chọn.

c có 3 cách chọn.

d có 2 cách chọn.

\(\Rightarrow\) Có \(4.4.3.2=96\) số thỏa mãn.

Vậy có \(120+96=216\) số tự nhiên thỏa mãn yêu cầu bài toán.

25 tháng 1 2017

Chọn C

Giả sử số lập được có dạng 

Ta có 

Vì  nên ta có các trường hợp sau

Trường hợp 1:  a 1 ,   a 2 ,   a 3 ,   a 4 ,   a 5 ,   a 6  được chọn từ 

+ Có 3 cách chọn chọn a 6

+ Có 5! cách chọn chọn bộ 5 số 

Suy ra có 3.5! = 360 số.

Trường hợp 2:  a 1 ,   a 2 ,   a 3 ,   a 4 ,   a 5 ,   a 6   được chọn từ 

a 6 = 0, có 5! cách chọn bộ 5 số 

a 6 ≠ 0 khi đó  a 6 có 3 cách chọn,  a 1 có 4 cách chọn và có 4! cách chọn bộ 4 số 

Suy ra có 5! + 3.4.4!= 408 số

Trường hợp 3:  a 1 ,   a 2 ,   a 3 ,   a 4 ,   a 5 ,   a 6  được chọn từ 

a 6  = 0, có 5! cách chọn bộ 5 số 

a 6 ≠ 0 khi đó  a 6  có 1 cách chọn,   a 1  có 4 cách chọn và có 4! cách chọn bộ 4 số 

Suy ra có 5! + 1.4.4! = 216 số

Vậy có: 360 + 408 + 216 = 984 số. 

\(\overline{abcdef}\)

TH1: f=0

=>Có 8*7*6*5*4=6720 cách

TH2: f=5

=>Có 7*7*6*5*4=5880 cách

=>Có 6720+5880=12600 cách

30 tháng 3 2023

Có 5 cách chọn chữ số hàng trục nghìn
Có 5 cách chọn chữ số hàng nghìn
Có 5 cách chọn chữ số hàng trăm
Có 5 cách chọn chữ số hàng trục
Có 5 cách chọn chữ số hàng đơn vị
=> Có thể  lập được bao nhiêu số tự nhiên có 5 chữ số từ các số đã cho là:
5.5.5.5.5 = 3125 ( số )

 

TH1: f=0

=>Có 8*7*6*5*4=6720 cách

TH2: f=5

=>Có 7*7*6*5*4=5880 cách

=>Có 6720+5880=12600 cách