K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2019

C n 1 ; C n 2 ; C n 3  lần lượt là số các tập con của A gồm 1;3;5… phần tử. Ta luôn có 

C n 0 + C n 1 + . . + C n n = 2 n ⇒ C n 0 + C n 1 + . . . = 2 n - 1

Từ giả thiết ta có phương trình:

2 n - 1 = 16 n ⇔ 2 n - 5 = n

Vì n > 4 nên ta xét n = 5 thấy không thỏa (*), do đó ta xét n ≥ 6 ; n ∈ ℤ

Xét hàm số f x = 2 x - 5 - x  liên tục trên nửa khoảng  [ 6 ; + ∞ ) , x ∈ ℤ .

Ta có f ' x = 2 x - 5 ln 2 - 1 > 0 ; ∀ x ≥ 6 ⇒ f x  liên tục và đồng biến trên nửa khoảng [ 6 ; + ∞ ) , x ∈ ℤ  và f(8) = 0 nên x = 8 là nghiệm duy nhất của phương trình.  2 x - 5 - x = 0 ; x ≥ 6 . Vậy n = 8 thỏa mãn đề bài.

Đáp án A