Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Do \(A\) là tập hợp có \(6\) phần tử nên số tập hợp con khác rỗng và khác \(A\) của tập hợp \(A\) là: \(2^{6} - 2 = 62\) (tập hợp con).
Xét tập hợp \(X\) là tập con bất kì trong \(62\) tập hợp con trên và \(T \left(\right. X \left.\right)\) là tổng các phần tử của \(X\).
Tập hợp \(X\) có nhiều nhất \(5\) phần tử thuộc tập hợp \(\left{\right. 0 ; 1 ; 2 ; . . . ; 14 \left.\right}\) nên ta có:
\(0 \leq T \left(\right. X \left.\right) \leq 10 + 11 + 12 + 13 + 14 = 60\).
Như vậy với \(62\) tập hợp con của \(A\) như trên thì tồn tại \(62\) tổng không vượt quá \(60\).
Theo nguyên lí Dirichlet thì tồn tại hai tổng có giá trị bằng nhau. Điều đó chứng tỏ tồn tại hai tập hợp con \(B_{1}\), \(B_{2}\) của tập hợp \(A\) có tổng các phần tử của chúng bằng nhau.

a/
\(\Leftrightarrow2m+3\ge m+1\Leftrightarrow m\ge-2\)
b/
Tổng 3 phần tử chẵn \(\Rightarrow\) có các trường hợp:
- Cả 3 phần tử đều chẵn: có đúng 1 tập \(\left\{2;4;6\right\}\)
- 2 phần tử lẻ và 1 phần tử chẵn: chọn 2 phần tử lẻ từ 3 phần tử lẻ có 3 cách, kết hợp với 1 trong 3 phần tử chẵn \(\Rightarrow3.3=9\) tập
Vậy có 10 tập thỏa mãn

a: Các tập con là {1}; {2}; {1;2}; \(\varnothing\)
Các tập con có 2 phần tử là {1;2}
b: Các tập con là {1}; {2}; {3}; {1;2}; {2;3}; {1;3}; {1;2;3}; \(\varnothing\)
Các tập con có 2 phần tử là {1;2}; {2;3}; {1;3}
c: Các tập con là {a}; {b}; {c}; {a;b}; {b;c}; {a;c}; {a;b;c}; \(\varnothing\)
Các tập con có 2 phần tử là {a;b}; {b;c}; {a;c}
d: 2x^2-5x+2=0
=>2x^2-4x-x+2=0
=>(x-2)(2x-1)=0
=>x=1/2 hoặc x=2
=>D={1/2;2}
Các tập con là {1/2}; {2}; {1/2;2}; \(\varnothing\)
Các tập con có 2 phần tử là {1/2; 2}

Đáp án D
A={0;1;2;3;4;5;6;7;8;9}
Các tập con có A có hai phần tử mà có chứa chữ số 0 là:
{0;1},{0;2},{0;3},{0;4},{0;5},{0;6},{0;7},{0;8},{0;9}
Vậy có 9 tập con thỏa mãn bài toán.

a) \(\left\{1\right\};\left\{2\right\};\left\{3\right\};\left\{4\right\};\left\{5\right\};\varnothing\)
b) \(\left\{1;2\right\};\left\{1;3\right\};\left\{1;4\right\};\left\{2;3\right\};\left\{2;4\right\};\left\{3;4\right\}\)
c) \(\left\{1;2;3\right\};\left\{2;3;4\right\};\left\{1;3;4\right\};\left\{1;2;4\right\}\)

a, Tập hợp con của A là{1} ,{2}, A,∅
b, Để M ⊂A và M⊂B
thì M={1}
c,Vì A⊂N và B⊂N
Nên N={1;2;4}

Tập hợp C rỗng vì \(x^2+7x+12=0\Leftrightarrow x\in\left\{-3;-4\right\}\notin N\)
\(a,\left\{1;2\right\};\left\{1;3\right\};\left\{2;3\right\}\\ b,\left\{1\right\};\left\{2\right\};\left\{3\right\};\left\{1;2\right\};\left\{1;3\right\};\left\{2;3\right\};\left\{1;2;3\right\}\)
\(X=\left\{1;3\right\}\\ X=\left\{1;2;3\right\}\\ X=\left\{1;3;4\right\}\\ X=\left\{1;3;5\right\}\\ X=\left\{1;2;3;4\right\}\\ X=\left\{1;2;3;5\right\}\\ X=\left\{1;3;4;5\right\}\\ X=\left\{1;2;3;4;5\right\}\)

1. a) Tập hợp con của A: {a} và \(\varnothing\)
b) Tập hợp con của B: {a}; {b}; {a;b} và \(\varnothing\)
c) Tập hợp con: \(\varnothing\)
2. a) A có 1 phần tử thì A sẽ có: 21=2 (tập hợp con)
b) A có 2 phần tử thì A sẽ có: 22=4 (tập hợp con)
c) A có 3 phần tử thì A sẽ có: 23=8 (tập hợp con)
*Cách tính số tập hợp con: Nếu tập hợp A có n phần tử thì A sẽ có 2n tập hợp con.

Các tập hợp con là:
\(\left\{1;2;3\right\};\left\{1;2;4\right\}:\left\{1;2;5\right\};\left\{2;3;4\right\};\left\{2;3;5\right\};\left\{3;4;5\right\};\left\{1;3;4\right\};\left\{1;3;5\right\};\left\{1;4;5\right\};\left\{1;2;3;4\right\};\left\{2;3;4;5\right\};\left\{1;3;4;5\right\};\left\{1;2;4;5\right\};\left\{1;2;3;4;5\right\}\)
hello