\(\left\{2;4;6;8;10\right\}\) . tập A có bao nhiêu tập con?

A. 20...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2019

Ta có: Tập hợp A có 5 phần tử

\(\Rightarrow\) Tập hợp A có \(2^5=32\) tập hợp con (áp dụng công thức)

AH
Akai Haruma
Giáo viên
1 tháng 12 2019

Lời giải:

Tập A sửa lại thành \(A=\left\{\frac{1}{6};\frac{1}{12};\frac{1}{20}; \frac{1}{30};....;\frac{1}{420}\right\}\)

Ta thấy:

\(\frac{1}{6}=\frac{1}{2.3}\)

\(\frac{1}{12}=\frac{1}{3.4}\)

\(\frac{1}{20}=\frac{1}{4.5}\)

.....

\(\frac{1}{420}=\frac{1}{20.21}\)

Do đó công thức tổng quát của các phần tử thuộc tập A là \(\frac{1}{x(x+1)}|x\in \mathbb{N}; 2\leq x\leq 20\)

Đáp án D.

1 tháng 12 2019

vâng cảm ơn rất nhiều ạ

30 tháng 11 2019

\(A=[3;5)\) ; \(B=\left(-\infty;4\right)\cup\left(7;+\infty\right)\)

\(\Rightarrow A\cup B=\left(-\infty;5\right)\cup\left(7;+\infty\right)\)

\(\Rightarrow C_R\left(A\cup B\right)=\left[5;7\right]\)

Ơ không biết bạn có gõ nhầm đáp án A không nhỉ :v

\(\Rightarrow C_R\left(A\cup B\right)=\left[5;7\right]\)

1 tháng 12 2019

ồ ok ạ

5 tháng 4 2017

1. a) Tập hợp con của A: {a} và \(\varnothing\)

b) Tập hợp con của B: {a}; {b}; {a;b} và \(\varnothing\)

c) Tập hợp con: \(\varnothing\)

2. a) A có 1 phần tử thì A sẽ có: 21=2 (tập hợp con)

b) A có 2 phần tử thì A sẽ có: 22=4 (tập hợp con)

c) A có 3 phần tử thì A sẽ có: 23=8 (tập hợp con)

*Cách tính số tập hợp con: Nếu tập hợp A có n phần tử thì A sẽ có 2n tập hợp con.

AH
Akai Haruma
Giáo viên
30 tháng 11 2019

Lời giải:

Để $y=\sqrt{4x-12m}$ xác định trên $(0;+\infty)$ thì $4x\geq 12m$ với mọi $x\in (0;+\infty)$

$\Leftrightarrow m\leq \frac{x}{3}$ với mọi $x\in (0;+\infty)$

Hay $m\leq 0$

Với $m$ nguyên và $m\in (-2018;2018)$ thì $m\in\left\{-2017; 2016;...;0\right\}$

Do đó có 2018 giá trị nguyên của $m$ thỏa mãn đề bài

Đáp án B.

1. Tìm hàm f: \(R\rightarrow R\) thỏa mãn điều kiện a) \(f\left(x^2+f\left(y\right)\right)=y+x.f\left(x\right),\forall x,y\in R\) b) \(f\left(\left(x+1\right).f\left(y\right)\right)=f\left(y\right)+y.f\left(x\right),\forall x,y\in R\) c) \(f\left(x^3+f\left(y\right)\right)=x^2f\left(x\right)+y,\forall x,y\in R\) d) \(\left\{{}\begin{matrix}f\left(x+y\right)=f\left(x\right)+f\left(y\right)\\f\left(xy\right)=f\left(x\right).f\left(y\right)\end{matrix}\right.\) 2. Cho A có n...
Đọc tiếp

1. Tìm hàm f: \(R\rightarrow R\) thỏa mãn điều kiện

a) \(f\left(x^2+f\left(y\right)\right)=y+x.f\left(x\right),\forall x,y\in R\)

b) \(f\left(\left(x+1\right).f\left(y\right)\right)=f\left(y\right)+y.f\left(x\right),\forall x,y\in R\)

c) \(f\left(x^3+f\left(y\right)\right)=x^2f\left(x\right)+y,\forall x,y\in R\)

d) \(\left\{{}\begin{matrix}f\left(x+y\right)=f\left(x\right)+f\left(y\right)\\f\left(xy\right)=f\left(x\right).f\left(y\right)\end{matrix}\right.\)

2. Cho A có n phần tử. Với \(r\in Z^+\), gọi \(f\left(r;n\right)\) là số cách chọn ra k tập con của A sao cho các tập con này không có phần tử chung. Tính \(f\left(r;n\right)\) theo n biết

a) r = 1

b) r = 2

c) r = 3

d) r bất kì

3. Cho \(A=\left\{1;2;3;...;n\right\}\). Với mỗi tập X, kí hiệu m(X) là trung bình cộng các phần tử của X. Gọi S là tập các tập con khác tập rỗng của A. T = {m(X)/ \(X\in S\)}

Tính m(T)

m.n giúp với mk đang cần gấp

Hung nguyen Ace Legona Akai Haruma

0
2 tháng 10 2017

Neet, Bùi Thị Vân phynit thầy cô giúp em với ạ em cảm ơn nhắm nhắm

28 tháng 6 2019

a, \(X\in\left\{a;b\right\},\left\{a;b;c\right\},\left\{a;b;d\right\},\left\{a;b;e\right\},\left\{a;c;d\right\},\left\{a;c;e\right\},\left\{a;d;e\right\},\left\{a;b;c;d\right\},\left\{a;b;c;e\right\},\left\{a;c;d;e\right\},\left\{a;b;c;d;e\right\}\)

b,

\(X=\left\{3;4;5\right\}\)

c,đề có sai hay sao ý ạ