Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án: A
CRB = (-∞; 3m - 1) ∪ (3m + 3; +∞)
A ⊂ CRB ⇔ m ≤ 3m - 1 ⇔ m ≥ 1/2
Xét pt hoành độ gđ của (P) và (d) có:
\(x^2-4mx+3m^2+1=2x+3m-2\)
\(\Leftrightarrow x^2-2x\left(2m+1\right)+3m^2-3m+3=0\) (1)
Để (P) và (d) cắt nhau tại hai điểm M;N khi pt (1) có hai nghiệm pb
\(\Leftrightarrow\Delta>0\Leftrightarrow m^2+7m-2>0\Leftrightarrow\left[{}\begin{matrix}m>\dfrac{-7+\sqrt{57}}{2}\\m< \dfrac{-7-\sqrt{57}}{2}\end{matrix}\right.\)
Gọi \(M\left(x_1;2x_1+3m-2\right);N\left(x_2;2x_2+3m-2\right)\) là hai giao điểm của (P) và (d)
\(\Rightarrow\overrightarrow{AM}\left(x_1;2x_1-2\right);\overrightarrow{AN}\left(x_2;2x_2-2\right)\)
(CT tính nhanh diện tích) \(S_{AMN}=\dfrac{1}{2}\left|x_1\left(2x_2-2\right)-x_2\left(2x_1-2\right)\right|\)\(=\dfrac{1}{2}\left|-2x_1+2x_2\right|=\left|x_2-x_1\right|=4\)
\(\Rightarrow\left(x_2-x_1\right)^2=16\)
\(\Leftrightarrow\left(x_2+x_1\right)^2-4x_1x_2=16\)\(\Leftrightarrow\left(4m+2\right)^2-4\left(3m^2-3m+3\right)=16\)
\(\Leftrightarrow4m^2+28m-24=0\)\(\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{-7+\sqrt{73}}{2}\\m=\dfrac{-7-\sqrt{73}}{2}\end{matrix}\right.\)(tm)
Vậy...
Để B tồn tại \(\Leftrightarrow2m< 3m+1\Leftrightarrow m>-1\)
TH1: \(10\le3m+1\) \(\Leftrightarrow m\ge3\)
\(A\cap B=[2m;10)\) có đúng ba số nguyên khi \(6< 2m\le7\) \(\Leftrightarrow3< m\le\dfrac{7}{2}\) ( tm đk )
TH2: \(3m+1< 10\) \(\Leftrightarrow m< 3\)
\(A\cap B=\left[2m;3m+1\right]\) có đúng ba số nguyên khi
Trường hợp m nguyên thì \(2m+2=3m+1\Leftrightarrow m=1\) (thỏa mãn)
Trường hợp m là số thực thì rộng lắm...
Chọn B.
Ta có cot3a + tan3a = ( tan a + cota) 3- 3tan a.cot a ( cot a + tan a)
= m3 - 3.1.m = m3 - 3m