Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

d) Xét tam giác BOH và tam giác BCK ta có:
\(\left\{{}\begin{matrix}\widehat{OBC}=\widehat{KBC}\left(chung\right)\\\widehat{OHB}=\widehat{BKC}\left(=90^o\right)\end{matrix}\right.\)
\(\Rightarrow\Delta OHB\sim\Delta CKB\left(g-g\right)\)
\(\Rightarrow\dfrac{BO}{CB}=\dfrac{BH}{BK}\left(tsdd\right)\)
\(\Rightarrow BH.BC=BO.BK\)
Xét tam giác COH và tam giác BCI ta có:
\(\left\{{}\begin{matrix}\widehat{OCH}=\widehat{ICB}\left(chung\right)\\\widehat{OHC}=\widehat{BIC}\left(=90^o\right)\end{matrix}\right.\)
\(\Rightarrow\Delta OHC\sim\Delta BIC\left(g-g\right)\)
\(\Rightarrow\dfrac{CO}{CB}=\dfrac{CH}{CI}\left(tsdd\right)\)
\(\Rightarrow CH.BC=CO.CI\)
Mà \(BH.BC=BO.BK\) (cmt)
Nên CO.CI+BO.BK=CH.BC+BH.BC=BC.BC=BC2

a,Áp dụng định lý Py ta go vào tam giác vuông ABC có :
AB^2+AC^2=BC^2
=> AC^2=BC^2 - AB^2
=> AC^2=15^2-9^2=144
=> AC = 12
Diện tích tam giác ABC là: 9.12/2=54

a) Xét ΔEHB vuông tại E và ΔDHC vuông tại D có
\(\widehat{EHB}=\widehat{DHC}\)(hai góc đối đỉnh)
Do đó: ΔEHB∼ΔDHC(g-g)
Suy ra: \(\dfrac{HE}{HD}=\dfrac{HB}{HC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{HE}{HB}=\dfrac{HD}{HC}\)
Xét ΔHED và ΔHBC có
\(\dfrac{HE}{HB}=\dfrac{HD}{HC}\)(cmt)
\(\widehat{EHD}=\widehat{BHC}\)(hai góc đối đỉnh)
Do đó: ΔHED∼ΔHBC(c-g-c)
b) Xét ΔADB vuông tại D và ΔAEC vuông tại E có
\(\widehat{EAC}\) chung
Do đó: ΔADB∼ΔAEC(g-g)
Suy ra: \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
Xét ΔADE và ΔABC có
\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)(cmt)
\(\widehat{EAD}\) chung
Do đó: ΔADE∼ΔABC(c-g-c)

a)Xét tam giác ABC và tam giác HAC có :
\(\widehat{BAC}=\widehat{AHC}\)
chung \(\widehat{BCA}\)
\(\Rightarrow\) tam giác ABC đồng dạng với tam giác HAC (g-g)
\(\Rightarrow\frac{AH}{AC}=\frac{AB}{BC}\)
\(\Leftrightarrow AH\times BC=AB\times AC\left(đpcm\right)\)