Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: AD=AB+BD(B nằm giữa A và D)
AC=AE+EC(E nằm giữa A và C)
mà AB=AE(gt)
và BD=CE(gt)
nên AD=AC
Xét ΔADC có AD=AC(cmt)
nên ΔADC cân tại A(Định nghĩa tam giác cân)
b) Xét ΔABE có AB=AE(gt)
nên ΔABE cân tại A(Định nghĩa tam giác cân)
Ta có: ΔABE cân tại A(cmt)
nên \(\widehat{ABE}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABE cân tại A)(1)
Ta có: ΔADC cân tại A(cmt)
nên \(\widehat{ADC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔADC cân tại A)(2)
Từ (1) và (2) suy ra \(\widehat{ABE}=\widehat{ADC}\)
mà \(\widehat{ABE}\) và \(\widehat{ADC}\) là hai góc ở vị trí đồng vị
nên BE//DC(Dấu hiệu nhận biết hai đường thẳng song song)
Ta có: BE//DC(cmt)
BE\(\perp\)AK(gt)
Do đó: AK\(\perp\)DC(Định lí 2 từ vuông góc tới song song)
Ta có: ΔADC cân tại A(cmt)
mà AK là đường cao ứng với cạnh đáy DC(cmt)
nên AK là đường trung trực của DC(Định lí tam giác cân)(Đpcm)
a) Ta có: AD=AB+BD(B nằm giữa A và D)
AC=AE+EC(E nằm giữa A và C)
mà AB=AE(gt)
và BD=CE(gt)
nên AD=AC
Xét ΔADC có AD=AC(cmt)
nên ΔADC cân tại A(Định nghĩa tam giác cân)
b) Xét ΔABE có AB=AE(gt)
nên ΔABE cân tại A(Định nghĩa tam giác cân)
Ta có: ΔABE cân tại A(cmt)
nên ˆABE=1800−ˆA2ABE^=1800−A^2(Số đo của một góc ở đáy trong ΔABE cân tại A)(1)
Ta có: ΔADC cân tại A(cmt)
nên ˆADC=1800−ˆA2ADC^=1800−A^2(Số đo của một góc ở đáy trong ΔADC cân tại A)(2)
Từ (1) và (2) suy ra ˆABE=ˆADCABE^=ADC^
mà ˆABEABE^ và ˆADCADC^ là hai góc ở vị trí đồng vị
nên BE//DC(Dấu hiệu nhận biết hai đường thẳng song song)
Ta có: BE//DC(cmt)
BE⊥⊥AK(gt)
Do đó: AK⊥⊥DC(Định lí 2 từ vuông góc tới song song)
Ta có: ΔADC cân tại A(cmt)
mà AK là đường cao ứng với cạnh đáy DC(cmt)
nên AK là đường trung trực của DC(Định lí tam giác cân)
Hoặc bạn có thể làm thế này !
Do 9 đường thẳng đó không có 2 đt nào song song. Gọi các đường thẳng đó là a, b, c, d, e, f, g, h, i. Gọi I là giao điểm của a và b.
Nếu 7 đt còn lại đi qua I coi như bài toán được giải quyết vì khi đó xuất hiện 18 góc nhỏ chính là 9 cặp góc đối đỉnh. Mà số đo góc I = 360 độ. Vậy 360:18 = 20 độ. Điều này chứng tỏ có ít nhất 2 góc nhỏ hơn hoặc bằng 20 độ.Hay 2 đường thẳng mà góc nhọn giữa chúng nhỏ hơn hoặc bằng 20 độ.
Nếu 7 đường thẳng đó chưa đi qua I. Ta tiến hành tạo ra các đường thẳng song song với 7 đường trên nhưng đi qua I. Lúc này lời giải tương tự trên
Lưu ý: Đề cần cải chính một chút là nhỏ thua hoặc bằng 20 độ. Trường hợp đặc biệt khi các đường thẳng đó lần lượt quay quanh I một góc 20 độ thì ta có 18 góc bằng nhau và bằng 20 độ mà không nhỏ hơn 20 độ.
Học tốt !Lyn Lee
a: XétΔADC có AD=AC
nên ΔADC cân tại A
b: Ta có: ΔABE cân tại A
mà AH là đường cao
nên AH là đường phân giác
=>AK là phân giác của góc DAC
mà ΔADC cân tại A
nên AK là đường trung trực của DC
Bài 1 : Bài giải
A B C H D F E
Bài 2 : Bài giải
A C B D E I F
Bài 3 : Bài giải
A B C D E 1 2 H I
Xét 2 tam giác \(\Delta ABI\text{ và }\Delta EBI\) có :
\(BA=BE\) ( gt )
\(BD\) : cạnh chung
\(\widehat{B_1}=\widehat{B_2}\) ( BD là đường phân giác của \(\widehat{B}\) )
\(\Rightarrow\text{ }\Delta ABD=\Delta EBD\text{ }\left(c.g.c\right)\)
\(\Rightarrow\text{ }AD=DE\text{ }\left(2\text{ cạnh tương ứng }\right)\)
....
Tự làm tiếp nha ! Mình bận rồi !
4:
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
=>ΔAEM=ΔAFM
=>AE=AF
c: AE=AF
ME=MF
=>AM là trung trực của EF
mà K nằm trên trung trực của EF
nên A,M,K thẳng hàng
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A