Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do BD là tia phân giác \(\widehat{B} \)
=> \(\widehat{B} = \widehat{EBD} + \widehat{DBC}\)
=> \(\widehat{EBD} = \widehat{DBC}\) ( hai góc tương ứng )
Do CE là tia phân giác \(\widehat{C}\)
=> \(\widehat{C} = \widehat{DCE} + \widehat{ECB}\)
=> \(\widehat{DCE} = \widehat{ECB}\) ( hai góc tương ứng)
Vì \(\widehat{B} = \widehat{C} \) ( theo giả thiết)
=> \(\widehat{DBC} = \widehat{ECB}\)
Xét Δ BEC và Δ CDB có
BC là cạnh chung
\(\widehat{B} = \widehat{C}\) ( gt )
\(\widehat{DBC} = \widehat{ECB}\) ( cm trên )
=> Δ BEC = Δ CDB ( trường hợp g-c-g )
=> BD = CE hai cạnh tương ứng
mk lm đại th chắc sai r nhưng nếu đúng tick cho mk nha!!!
a: góc ABC=180-70-30=80 độ
góc BAD=80/2=40 độ
góc ADB=180-40-70=70 độ
b: góc IBC+góc ICB=1/2(30+80)=55 độ
=>góc BIC=125 độ
=>góc CID=55 độ
a) Tam giác ABC có: \(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180\)
Mà \(\widehat{BAC}=60\)
Suy ra \(\widehat{ABC}+\widehat{ACB}=180-60=120\)
Vì BD, CE lần lượt là phân giác \(\widehat{ABC}\)và \(\widehat{ACB}\)
Nên \(\widehat{IBC}+\widehat{ICB}=\frac{\widehat{ABC}+\widehat{ACB}}{2}\)=\(\frac{120}{2}=60\)
Tam giác BIC có \(\widehat{IBC}+\widehat{ICB}+\widehat{BIC}=180\)
Suy ra 60 + \(\widehat{BIC}\)=180
Suy ra \(\widehat{BIC}\)= 180-60=120
giải:
a) Xét tam giác BAD và BED, ta có:
BA = BE
góc ABD = góc EBD
BD là cạnh chung
=> tam giác BAD = tam giác BED (c - g - c)
=> DA = DE
b) Vì tam giác BAD = tam giác BED
suy ra: góc A = góc BED = 90 độ
a) xét tam giác ABD và tam giác DBE có:
BA = BE (gt)
góc ABD = góc DBE (gt)
BD chung
=> tam giác ABC = tam giác DBE (c.g.c)
=> DA = DE (cạnh tương ứng)
b) vì tam giác ABD = tam giác DBE (câu a)
=> góc A = góc BED = 900 (góc tương ứng)
vậy góc BED = 900
t i c k nha ^.^ !!! 45365647567867967978907957856846784678568586856
Nếu góc B=C => Tam giác ABC cân tại A
Tia PG của B cắt AC ở D (1)
Tia PG của C cắt AB ở E (2)
Từ 1 và 2 => BD = CE ( do: góc B = C)