Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ B hạ đường vuông góc với AC tại H
Ta có:\(\widehat{BAH}=180^0-\widehat{BAC}=180^0-120^0=60^0\)
Suy ra 2HA=AB(1)(bạn tự chứng minh)
Áp dụng định lý Py-ta-gô vào 2 tam giác vuông AHB và CHB ta có
\(\Rightarrow\left\{{}\begin{matrix}HA^2+HB^2=AB^2\left(2\right)\\HB^2+HC^2=BC^2\end{matrix}\right.\)
Ta có:\(HB^2+HC^2=BC^2\)
\(\Rightarrow HB^2+\left(HA+AC\right)^2=BC^2\)(Vì \(\widehat{A}>90^0\)nên H nằm trên tia đối của AC)
\(\Rightarrow HB^2+HA^2+2HAAC+AC^2=BC^2\left(3\right)\)
\(\Rightarrow\left(HB^2+HA^2\right)+2HAAC+AC^2\)
Lắp (1) và (2) vào (3)
\(\Rightarrow AB^2+AB.AC+AC^2=BC^2\)hay \(a^2=b^2+c^2+bc\left(đpcm\right)\)
+) Giả sử 0<a≤c0<a≤c ta có: a2≤c2a2≤c2
a2+b2>5c2a2+b2>5c2
⇒a2+b2>5a2⇒a2+b2>5a2
⇒b2>4a2⇒b2>4a2
⇒b>2a⇒b>2a (1)
c2>a2⇒b2+c2>a2+b2>5c2c2>a2⇒b2+c2>a2+b2>5c2
⇒b2>4c2⇒b2>4c2
⇒b>2c⇒b>2c (2)
Cộng (1), (2) ⇒2b>2a+2c⇒2b>2a+2c
⇒b>a+c⇒b>a+c ( vô lí )
⇒c<a⇒c<a
+) Chứng minh tương tự suy ra c < b
{c<ac<b⇒{Cˆ<AˆCˆ<Bˆ⇒2Cˆ<Aˆ+Bˆ{c<ac<b⇒{C^<A^C^<B^⇒2C^<A^+B^
⇒3Cˆ<Aˆ+Bˆ+Cˆ⇒3C^<A^+B^+C^
⇒3Cˆ<180o⇒3C^<180o
⇒Cˆ<60o(đpcm)⇒C^<60o(đpcm)
Vậy...
theo định lí py-ta-go ta có :
BC2=AC2+AB2
\(\Rightarrow\)BC2=82+62 \(\Rightarrow\)BC=\(\sqrt{8^2}+6^2\)=50