Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Xét tam giác ABE và tam giác ACF có:
Góc AEB=góc AFC(=90 độ)
Góc A chung
=>Tam giác ABE đồng dạng vs tam giác ACF (g-g)
b)
Vì tam giác ABE đồng dạng vs tam giác ACF(cmt)
=>\(\frac{AB}{AC}=\frac{AE}{AF}\)
Xét tam giác AFE và tam giác ACB có:
Góc A chung(gt)
\(\frac{AB}{AC}=\frac{AE}{AF}\)
=>Tam giác AFE và tam giác ACB đồng dạng (c-g-c)
c)
H ở đou ra vại? :))
A B C H D E F 1 2
a) Vì \(AD\perp BC\), \(BE\perp AC\), \(CF\perp AB\) (gt)
=> \(\widehat{ADC}=\widehat{AEH}=\widehat{AFH}=90^o\) (ĐN 2 đường thẳng \(\perp\))
Xét \(\Delta AEH\) và \(\Delta ADC\) có:
\(\widehat{A}\): chung
\(\widehat{ADC}=\widehat{AEH}\) (cmt)
=> \(\Delta AEH\) ~ \(\Delta ADC\) (g.g)
=> \(\dfrac{AE}{AD}=\dfrac{AH}{AC}\) (ĐN 2 tam giác ~)
=> \(AE\cdot AC=AH\cdot AD\) (t/c TLT)
b) Xét \(\Delta AFH\) và \(\Delta CDH\) có:
\(\widehat{HDC}=\widehat{AFH}\) (cmt)
\(\widehat{H_1}=\widehat{H_2}\) (2 góc đối đỉnh)
=> \(\Delta AFH\) ~ \(\Delta CDH\) (g.g)
1b) Tam giác AMN vuông tại M có góc A = 600 => góc N = 300
Tam giác vuông AMD và tam giác vuông NMA có góc A = góc N(cùng = 300) nên chúng đồng dạng
=> SAMD/SNMA = (AM/MN)2 = AM2/MN2 (1)
Gọi I là trung điểm của AN => MI là trung tuyến tg AMN vuông tại M => MI = IA = 1/2AN => tg AMI cân tại I mà góc A = 600
=> tg AMI đều => AM = AI = 1/2AN
Theo Pytago ta có AN2 = AM2 + MN2 => (2AM)2 - AM2 =MN2 => 3AM2 = MN2 => AM2/MN2 = 1/3 (2)
Từ (1) và (2) bn suy ra nhé
1b) Tam giác AMN vuông tại M có góc A = 60o
Tam giác vuông AMD và tam giác vuông NMA có góc A = góc N(cùng = 30o) nên chúng đồng dạng
=> SAMD/SNMA = (AM/MN)2 = AM2 /MN2 (1)
Gọi I là trung điểm của AN => MI là trung tuyến tg AMN vuông tại M => MI = IA = 1/2AN => tg AMI cân tại I mà góc A = 60o
=> tg AMI đều => AM = AI = 1/2AN
Từ (1) và (2) bn suy ra nhé