K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài1: cho tam giác ABC nhọn(AB《AC). Có hai đường cao BE và CF cắt nhau tại H.a) CM: Tam giác ABE đồng dạng với tam giác ACF.b) CM: Tam giác AFE đồng dạng với tam giác ACB.c) Tia phân giác của góc ABE cắt tia phân giác của góc ACF tại K,gọi I,J lần lượt là trung điểm của AH và BC. Cm: I,K,J thẳng hàng.Bài2: Cho tam giác ABC vuông tại A (AB《AC),vẽ đường cao AH. Trên đoạn thẳng HC lấy điểm M (M không trùng...
Đọc tiếp

Bài1: cho tam giác ABC nhọn(AB《AC). Có hai đường cao BE và CF cắt nhau tại H.

a) CM: Tam giác ABE đồng dạng với tam giác ACF.

b) CM: Tam giác AFE đồng dạng với tam giác ACB.

c) Tia phân giác của góc ABE cắt tia phân giác của góc ACF tại K,gọi I,J lần lượt là trung điểm của AH và BC. Cm: I,K,J thẳng hàng.

Bài2: Cho tam giác ABC vuông tại A (AB《AC),vẽ đường cao AH. Trên đoạn thẳng HC lấy điểm M (M không trùng với H và C),từ M vẽ MN vuông góc với AC tại N.

a) CM:tam giác CMN đồng dạng với tam giác CAH và CA×CN=CH×CM

b) CM: tam giác ACM đồng dạng với tam giác HNC.

c) Trên tia đối của tia AC lấy điểm D sao cho AD《AC. Vẽ AE vuông góc với BD tại E. CM:góc BEH=góc BCN. Gọi K,F lần lượt là trung điểm BH và BD. I là giao điểm của EK và CF. CM: KC×IE=EF×IC.

1
27 tháng 5 2021

Bài 1: 

a) Xét tam giác ABE và tam giác ACF có:

Góc AEB=góc AFC(=90 độ)

Góc A chung

=>Tam giác ABE đồng dạng vs tam giác ACF (g-g)

b)

Vì tam giác ABE đồng dạng vs tam giác ACF(cmt)

=>\(\frac{AB}{AC}=\frac{AE}{AF}\)

Xét tam giác AFE và tam giác ACB có:

Góc A chung(gt)

\(\frac{AB}{AC}=\frac{AE}{AF}\)

=>Tam giác AFE và tam giác ACB đồng dạng (c-g-c)

c)

H ở đou ra vại? :))

22 tháng 8 2021

BE vs CF cắt nhau ở h còn j bạn;-;

Cho tam giác ABC có 3 góc nhọn. Các đường cao lần lượt là AD,BE,CF cắt nhau tại H. Gọi I là trung điểm của AH; J là trung điểm của BC. Chứng minh:                            a) tam giác AEH đồng dạng với tam giác ADC và AE.AC=AH.AD                                 b) AE.AC=AF.AB  và tam giác AEF đồng dạng tam giác ABC                                        c) tam giác HFB đồng dạng...
Đọc tiếp

Cho tam giác ABC có 3 góc nhọn. Các đường cao lần lượt là AD,BE,CF cắt nhau tại H. Gọi I là trung điểm của AH; J là trung điểm của BC. Chứng minh:                            a) tam giác AEH đồng dạng với tam giác ADC và AE.AC=AH.AD                                 b) AE.AC=AF.AB  và tam giác AEF đồng dạng tam giác ABC                                        c) tam giác HFB đồng dạng với tam giác HEC và HE.HB=HF.HC                                d)  EH là tia phân giác của góc DEF                                                                          e) BF.BA + CE.CA=BC2                                                                                                                       f) HD/AD + HE/BE + HF/CF = 1                                                                                                                   g) góc IEG = 90

0
Cho tam giác ABC có 3 góc nhọn. Các đường cao lần lượt là AD,BE,CF cắt nhau tại H. Gọi I là trung điểm của AH; J là trung điểm của BC. Chứng minh:                            a) tam giác AEH đồng dạng với tam giác ADC và AE.AC=AH.AD                                 b) AE.AC=AF.AB  và tam giác AEF đồng dạng tam giác ABC                                        c) tam giác HFB đồng dạng...
Đọc tiếp

Cho tam giác ABC có 3 góc nhọn. Các đường cao lần lượt là AD,BE,CF cắt nhau tại H. Gọi I là trung điểm của AH; J là trung điểm của BC. Chứng minh:                            a) tam giác AEH đồng dạng với tam giác ADC và AE.AC=AH.AD                                 b) AE.AC=AF.AB  và tam giác AEF đồng dạng tam giác ABC                                        c) tam giác HFB đồng dạng với tam giác HEC và HE.HB=HF.HC                                d)  EH là tia phân giác của góc DEF                                                                          e) BF.BA + CE.CA=BC2                                                                                                                       f) HD/AD + HE/BE + HF/CF = 1                                                                                                                   g) góc IEj = 90

0

A B C H D E F 1 2

a) Vì \(AD\perp BC\), \(BE\perp AC\), \(CF\perp AB\) (gt)

=> \(\widehat{ADC}=\widehat{AEH}=\widehat{AFH}=90^o\) (ĐN 2 đường thẳng \(\perp\))

Xét \(\Delta AEH\)\(\Delta ADC\) có:

\(\widehat{A}\): chung

\(\widehat{ADC}=\widehat{AEH}\) (cmt)

=> \(\Delta AEH\) ~ \(\Delta ADC\) (g.g)

=> \(\dfrac{AE}{AD}=\dfrac{AH}{AC}\) (ĐN 2 tam giác ~)

=> \(AE\cdot AC=AH\cdot AD\) (t/c TLT)

b) Xét \(\Delta AFH\)\(\Delta CDH\) có:

\(\widehat{HDC}=\widehat{AFH}\) (cmt)

\(\widehat{H_1}=\widehat{H_2}\) (2 góc đối đỉnh)

=> \(\Delta AFH\) ~ \(\Delta CDH\) (g.g)

13 tháng 3 2018

Bạn giúp mình câu c được không ?

4 tháng 5 2015

1b) Tam giác AMN vuông tại M có góc A = 600 => góc N = 300

Tam giác vuông AMD và tam giác vuông NMA có góc A = góc N(cùng = 300) nên chúng đồng dạng

=> SAMD/SNMA = (AM/MN)2 = AM2/MN2 (1)

Gọi I là trung điểm của AN => MI là trung tuyến tg AMN vuông tại M => MI = IA = 1/2AN => tg AMI cân tại I mà góc A = 600

=> tg AMI đều => AM = AI = 1/2AN

Theo Pytago ta có AN2 = AM2 + MN2 => (2AM)2 - AM2 =MN2 => 3AM2 = MN2 => AM2/MN2 = 1/3 (2)

Từ (1) và (2) bn suy ra nhé

26 tháng 4 2019

1b) Tam giác AMN vuông tại M có góc A = 60o

Tam giác vuông AMD và tam giác vuông NMA có góc A = góc N(cùng = 30o) nên chúng đồng dạng

=> SAMD/SNMA  = (AM/MN)2 = AM2 /MN2 (1)

Gọi I là trung điểm của AN => MI là trung tuyến tg AMN vuông tại M => MI = IA = 1/2AN => tg AMI cân tại I mà góc A = 60o

=> tg AMI đều => AM = AI = 1/2AN

Từ (1) và (2) bn suy ra nhé