Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3:
Xét tứ giác AEHF có
góc AEH=góc AFH=góc EAF=90 độ
=>AEHF là hình chữ nhật
AM vuông góc EF
=>góc MAC+góc AFE=90 độ
=>góc MAC+góc AHE=90 độ
=>góc MAC+góc B=90 độ
mà góc MCA+góc B=90 độ
nên góc MAC=góc MCA
=>MA=MC
góc MAC+góc MAB=90 độ
góc MCA+góc MBA=90 độ
mà góc MAC=góc MCA
nên góc MAB=góc MBA
=>MA=MB
=>MB=MC
=>M là trung điểm của BC

Tam giác ABC có DE//BC=>\(\frac{AB}{AD}=\frac{AC}{AE}=>\frac{AE}{AD}=\frac{AC}{AB}\left(1\right)\)
TA có AC^2=AB.AD=>\(\frac{AC}{AB}=\frac{AD}{AC}\)mà (1)=>\(\frac{AD}{AC}=\frac{AE}{AD}\)=> AC.AE=AD^2
Mặt khác CD^2=AC.AE
=>AD=CD

A B C I N M K D E
Có AD // NK, đường tròn (MNK) tiếp xúc với AC tại K, suy ra ^ADM = ^MNK = ^AKM
Suy ra 4 điểm A,M,K,D cùng thuộc một đường tròn. Tương tự với 4 điểm A,M,K,E
Từ đó 5 điểm A,K,M,D,E cùng thuộc một đường tròn
Do vậy ^NDE = ^NKM = ^BNM. Vì 2 góc ^NDE, ^BNM so le trong nên DE // BC hay PQ // BC (đpcm).