K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2016

ban bit cach lam khong day to voi

26 tháng 2 2019

Khó quá đi !

28 tháng 4 2020

Mk lười lắm nên bạn tự vẽ hình nhaaaaa

+) Vì E thuộc đường trung trực của DB => DE=DB

+) E thuộc đường trung trực của AC => EA=EC

Xét tam giác AEB và tam giác CED, có:

+) AB=DC

+) BE=ED

+) AE=EC

=> Tam giác AEB = Tam giác CED ( c.c.c)

b) Tam giác AEB = Tam giác CED =>^A1=^DCE ( góc tương ứng ) ( 1 )

=> ^A2 = ^DCE ( 2 )

Từ ( 1 ) và ( 2 ) => ^A1 = ^A2 ( cùng bằng ^DCE )

=> AE là phân giác của góc trong tại đỉnh A của tam giác ABC

24 tháng 1 2018

Xét \(\Delta ABD\)và \(\Delta ACD\)

\(\widehat{ABD}=\widehat{ACD}=90^o\left(BD\perp AB;CD\perp AC\right)\)

AB = AC ( \(\Delta ABC\)cân tại A )

AD: Cạnh chung

Do đó : \(\Delta ABD=\Delta ACD\)( cạnh huyền - cạnh góc vuông )

\(\Rightarrow\widehat{BAD}=\widehat{CAD}\) ( 2 góc tuơng ứng )

Gọi I là giao điểm của BC và AD

Xét \(\Delta ABI\)và \(\Delta ACI\) có:

AB = AC ( tam giác ABC cân ở A )

\(\widehat{BAI}=\widehat{CAI}\left(cmt\right)\)

AI : cạnh chung

Do đó : \(\Delta ABI=\Delta ACI\left(c.g.c\right)\)

\(\Rightarrow BI=CI\)( cặp cạnh tuơng ứng )

Mà \(I\in BC\)

Nên I là trung điểm của BC (1)

Ta có: \(\widehat{AIB}=\widehat{AIC}\)( \(\Delta ABI=\Delta ACI\) )

Mà \(\widehat{AIB}+\widehat{AIC}=180^o\)( 2 góc kề bù )

Nên : \(\widehat{AIB}=\widehat{AIC}=\frac{180^o}{2}=90^o\)

=> \(AI\perp BC\)hay \(AD\perp BC\) (2)

Từ (1) và (2) suy ra : AD là đuờng trung trực của BC ( đpcm )

24 tháng 1 2018

Xét tam giác ADB và tam giác ADC có

AD chung

góc ABD= góc ACD(=90)

AB=AC(gt)

=>tam giác ADC= tam giác ADC

=>góc BAD=gócCAD

=>AD phan giac goc a

Mà trong một tam giác cân tia phân giac là đường trung trực

=>AH trung trực BC