Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Nối AM
- Do D đối xứng với M qua AB => AB là đường trung trực của MD
=> AD=AM (t/c đường trung trực)
- Do E đối xứng với M qua AC => AC là đường trung trực của ME
=> AE=AM (t/c đường trung trực)
Từ đó suy ra: AD=AE hay A là trung điểm của DE hay D đối xứng với E qua A (đpcm)
b/ Ta có: AM=AE (cmt)
- Tứ giác MAEC có: AE=AM => Tứ giác MAEC là hình thoi => CE // AM
Tương tự ta cũng có: AM=AD (cmt)
- Tứ giác ADBM có: AM=AD => Tứ giác ADBM là hình thoi => BD // AM
Từ đó suy ra được: BD // CE (đpcm)
c/ Điểm M phải là trung điểm của BC thì DE mới có độ dài nhỏ nhất
Bổ sung đề; AM vuông góc BC
a: Ta có: M và D đối xứng nhau qua AB
nên AM=AD
=>ΔAMD cân tại A
=>AB là phân giác của góc MAD(1)
Ta có: M và E đối xứng nhau qua AC
nên AM=AE
=>ΔAME cân tại A
=>AC là phân giác của góc MAE(2)
Từ (1) và (2) suy ra góc DAE=2x90=180 độ
=>D,A,E thẳng hàng
mà AD=AE
nên A là trung điểm của DE
b: Xét ΔAMB và ΔADB có
AM=AD
MB=DB
AB chung
Do đó: ΔAMB=ΔADB
Suy ra: góc ADB=90 độ
hay BD vuông góc với DE(3)
Xét ΔAMC và ΔAEC có
AM=AE
MC=EC
AC chung
Do đó: ΔAMC=ΔAEC
Suy ra: góc AEC=90 độ
=>CE vuông góc với ED(4)
Từ (3) và (4) suy ra BD//CE
Vì D đối xứng với M qua trục AB
⇒ AB là đường trung trực của MD.
⇒ AD = AM (t/chất đường trung trực) (1)
Vì E đối xứng với M qua trục AC
⇒ AC là đường trung trực của ME
⇒ AM = AE (t/chất đường trung trực) (2)
Từ (1) và (2) suy ra: AD = AE
Nối A vs M
a) ta có: M đối xưng vs D qua AB=> AB là đg trung trực của DM =>AD=AM(ĐL) (1)
Do M đx vs E qua AC nên AC là đg trung trực của ME=>AE=AM (2)
từ (1),(2) => AD=AE
b)ta có : DAB = BAM (vì AB là đg tt của DM) =>DAB+BAM=2. BAM (3)
mặt khác: EAC=CAM(vì AC là đg tt của EM)=>EAC+CAM=2.CAM (4)
từ (3),(4)=>DAB+BAM+MAC+CAE=2(BAM+CAM)=2.90=180 (vì BAM+CAM=BAC=90)
=>3 điểm D,A,E thẳng hàng
Câu 1:
Xét ΔEAB và ΔDAC có
AE=AD
\(\widehat{EAB}=\widehat{DAC}\)
AB=AC
Do đó: ΔEAB=ΔDAC
Suy ra: EB=DC và \(\widehat{EBA}=\widehat{DCA}\)
=>\(\widehat{EBC}=\widehat{DCB}\)
Xét ΔEBM và ΔDCM có
EB=DC
\(\widehat{EBM}=\widehat{DCM}\)
MB=MC
Do đó: ΔEBM=ΔDCM
Suy ra: ME=MD
mà AE=AD
nên AM là đường trung trực của ED
=>E đối xứng với D qua AM
a: Ta có: M và D đối xứng nhau qua AB
nên AB là đường trung trực của MD
=>AM=AD
Xét ΔAMD có AM=AD
nên ΔAMD cân tại A
mà AB là đường cao
nên AB là phân giác của góc MAD(1)
Ta có: M và E đối xứng nhau qua AC
nên AC là đường trung trực của ME
=>AM=AE
mà AC là đường cao
nên AC là tia phân giác của góc MAE(2)
Ta có: AM=AD
AM=AE
Do đó: AD=AE
b: Từ (1) và (2) suy ra \(\widehat{EAD}=2\cdot\left(\widehat{BAM}+\widehat{CAM}\right)=180^0\)
nên E,A,D thẳng hàng