Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: ^ECN=^ACB (Đối đỉnh). Mà tam giác ABC cân tại A => ^ACB=^ABC => ^ECN=^ABC hay ^ECN=^DBM.
Xét tam giác ECN và tam giác DBM có:
^DMB=^ENC=900
CE=BD => Tam giác ECN=Tam giác DBM (Cạnh huyền góc nhọn)
^ECN=^DBM
=> CN=BM (2 cạnh tương ứng) => CN+MC=BM+MC (Cộng mỗi vế với MC) => MN=BC (đpcm)
Tam giác ECN=Tam giác DBM (cmt) => EN=DM (2 cạnh tương ứng)
DM và EN đều vuông góc với BC => DM//EN => ^MDI=^NEI (So le trong)
Xét tam giác DMI và tam giác ENI có:
^DMI=^ENI=900
DM=EN (cmt) => Tam giác DMI=Tam giác ENI (g.c.g)
^NDI=^NEI
=> DI=EI => I là trung điểm của DE (đpcm)
b) AO là phân giác của ^BAC => ^A1=^A2.
Xét tam giác ABO và tam giác ACO có:
AB=AC
^A1=^A2 => Tam giác ABO=Tam giác ACO (c,g,c)
AO chung
=> ^ABO=^ACO (2 góc tương ứng) (1)
Do tam giác ABC cân tại A và AO là đường phân giác => AO cũng là đương trung trực của tam giác ABC.
=> OB=OC (Tính chất đường trung trực của đoạn thẳng)
Ta có: Điểm O thuộc d, d là trung trực của DE => OD=OE
Xét tam giác DBO và tam giác ECO có:
OB=OC
BD=CE => Tam giác DBO=Tam giác ECO (c.c.c)
OD=OE
=> ^DBO=^ECO (2 góc tương ứng) hay ^ABO=^ECO (2)
Từ (1) và (2) => ^ACO=^ECO. Mà 2 góc này là 2 góc kề bù => ^ACO=^ECO=900
=> OC vuông góc với AE hay OC vuông góc AC (đpcm).
Xet ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE và góc ADB=góc AEC
=>góc HBD=góc KCE
=>góc IBC=góc ICB
=>IB=IC
mà AB=AC
nên AI là trung trực của BC
=>AI vuông góc BC
=>AI vuông góc DE
mà ΔADE cân tại A
nên AI là trung trực của DE
Bài 5:
Tgiac ABC vuông cân tại A => góc CBA = 45 độ
Xét góc CBA là góc ngoài tgiac DBC => góc CBA = góc D + DCB
Xét tgiac DBC có DB = BC => tgiac DBC cân tại B => góc D = góc DBC
=> góc D = 45/2 = 22,5 độ
và góc ACD = 22,5 + 45 = 67,5 độ
Vậy số đo các góc của tgiac ACD là ...
Bài 6:
Tgiac ABC cân tại B, góc B = 100 độ => góc A = góc C = 40 độ
Xét tgiac ABD có AB = AD => tgiac ABD cân tại A => góc EDB (ADB) = (180-40)/2 =70 độ
cmtt với tgiac CBE => góc DEB = 70 độ
=> góc DBE = 180-70-70 = 40 độ
Bài 7:
Xét tgiac ABC cân tại A => góc BAC = 180 - 2.góc C => 2.(90 - góc C)
Xét tgiac BHC vuông tại H => góc CBH = 90 - góc C
=> đpcm
Bài 8: mai làm hihi
a: Xét ΔBEC vuông tại E và ΔCDB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)
Do đó:ΔBEC=ΔCDB
b: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó:ΔABD=ΔACE
Suy ra: AD=AE
c: Ta có: ΔBEC=ΔCDB
nên \(\widehat{IBC}=\widehat{ICB}\)
hayΔIBC cân tại I
Xét ΔABI và ΔACI có
AB=AC
AI chung
BI=CI
Do đó:ΔABI=ΔACI
Suy ra: \(\widehat{BAI}=\widehat{CAI}\)
hay AI là tia phân giác của góc BAC
d: Xét ΔABC có AE/AB=AD/AC
nên DE//BC
a) Ta có MD = MA; BD BA nên MB là trung trức của AD.
Vậy nên I thuộc trung trực AD hay ID = IA.
Tương tự IE = IA.
Suy ra ID = IE hay tam giác IDE là tam giác cân tại I.
Lại có IO là trung tuyến nên OI là đường cao hay \(IO\perp DE\)
b) Ta có \(\widehat{ABC}+\widehat{ACB}=180^o-\widehat{BAC}=180^o-80^o=100^o\)
\(\Rightarrow\widehat{ADB}+\widehat{AFC}=\frac{\widehat{ABC}}{2}+\frac{\widehat{ACB}}{2}=\frac{100^o}{2}=50^o\)
\(\Rightarrow\widehat{DAB}+\widehat{EAC}=50^o\)
\(\Rightarrow\widehat{DAE}=80^o+50^o=130^o\)
Ta thấy \(\widehat{IDA}=\widehat{IAD};\widehat{IEA}=\widehat{IAE}\Rightarrow\widehat{IDA}+\widehat{IAE}=\widehat{IAD}+\widehat{IEA}=\widehat{DAE}=130^o\)
\(\Rightarrow\widehat{DIE}=360^o-130^o-130^o=100^o\)
Ta thấy ngay \(\widehat{MIN}=\widehat{MIA}+\widehat{NIA}=\frac{\widehat{DIA}}{2}+\frac{\widehat{EIA}}{2}=\frac{100^o}{2}=50^o\)
Bài bạn đấy nhìn khó hiểu???