K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBEA vuông tại E và ΔBEN vuông tại E co

BA=BN

BE chung

=>ΔBEA=ΔBEN

b: Xét ΔBAD có

BH vừa là đường cao, vừa là đường trung tuyến

=>ΔBAD cân tại B

c: Xét ΔNAB có

AH,BE là đường cao

AH cắt BE tại K

=>K là trực tâm

=>NK vuông góc AB

=>NK//AC

a: Xét ΔABC vuông tại A và ΔADE vuông tại A có

AB=AD

AC=AE

Do đó: ΔABC=ΔADE
=>BC=DE
b: Xét ΔABD vuông tại A có AB=AD

nên ΔABD vuông cân tại A

=>\(\widehat{ABD}=\widehat{ADB}=45^0\)

Xét ΔAEC vuông tại A có AE=AC

nên ΔAEC vuông cân tại A

=>\(\widehat{AEC}=\widehat{ACE}=45^0\)

Ta có: \(\widehat{ABD}=\widehat{AEC}\left(=45^0\right)\)

mà hai góc này là hai góc ở vị trí so le trong

nên BD//CE
 

a: Xét ΔAHB vuông tại H và ΔAHD vuông tại H có 

HB=HD

AH chung

Do đó: ΔAHB=ΔAHD

Suy ra: AB=AD

Xét ΔABD có AB=AD

nên ΔABD cân tại A

b: Xét ΔCHB vuông tại H và ΔCHD vuông tại H có 

CH chung

HB=HD

Do đó: ΔCHB=ΔCHD

Suy ra: CB=CD

c: Xét ΔDBC có 

BM là đường cao ứng với cạnh DC

CH là đường cao ứng với cạnh BD

BM cắt CH tại I

Do đó: I là trực tâm của ΔDCB

Suy ra: DI\(\perp\)BC

4 tháng 3 2016

giúp mình với

1: Xét ΔBAM và ΔBNM có

BA=BN

góc ABM=goc NBM

BM chung

Do đó: ΔBAM=ΔBNM

2: ΔBAM=ΔBNM

=>MA=MN

mà BA=BN

nên BM là trung trực của AN

=>I là trung điểm của AN

3: góc ABC+góc C=90 độ

góc NMC+góc C=90 độ

=>góc ABC=góc NMC

15 tháng 12 2019

M A B C N H F D

a) Xét \(\Delta\)AHB và \(\Delta\)DHB có:

^AHB = ^DHB ( 1v )

HA = HD ( giả thiết )

MH chung 

=> \(\Delta\)AHB = \(\Delta\)DHB  ( c.g.c) 

b) Từ (a) => ^ABH = ^DHB  => BH là phân giác ^ABD

Vì \(\Delta\)ABC nhọn => H nằm trong đoạn BC 

=> BC là phân giác ^ABD

c) NF vuông BC 

AH vuông BC 

=> NF // AH 

=> ^NFM = ^HAM ( So le trong )

Lại có: ^HMA = NMF ( đối đỉnh ) và MA = MF ( giả thiết )

=> \(\Delta\)NFM = \(\Delta\)HAM  ( g.c.g)

=> NF = AH ( 2) 

Từ ( a) => AH = HD ( 3)

Từ (2) ; (3) => NF = HD

a) Xét ΔAMB và ΔDMC có

MA=MD(gt)

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)

Do đó: ΔAMB=ΔDMC(c-g-c)