Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBEA vuông tại E và ΔBEN vuông tại E co
BA=BN
BE chung
=>ΔBEA=ΔBEN
b: Xét ΔBAD có
BH vừa là đường cao, vừa là đường trung tuyến
=>ΔBAD cân tại B
c: Xét ΔNAB có
AH,BE là đường cao
AH cắt BE tại K
=>K là trực tâm
=>NK vuông góc AB
=>NK//AC
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
Do đó: ΔABC=ΔADE
=>BC=DE
b: Xét ΔABD vuông tại A có AB=AD
nên ΔABD vuông cân tại A
=>\(\widehat{ABD}=\widehat{ADB}=45^0\)
Xét ΔAEC vuông tại A có AE=AC
nên ΔAEC vuông cân tại A
=>\(\widehat{AEC}=\widehat{ACE}=45^0\)
Ta có: \(\widehat{ABD}=\widehat{AEC}\left(=45^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên BD//CE
a: Xét ΔAHB vuông tại H và ΔAHD vuông tại H có
HB=HD
AH chung
Do đó: ΔAHB=ΔAHD
Suy ra: AB=AD
Xét ΔABD có AB=AD
nên ΔABD cân tại A
b: Xét ΔCHB vuông tại H và ΔCHD vuông tại H có
CH chung
HB=HD
Do đó: ΔCHB=ΔCHD
Suy ra: CB=CD
c: Xét ΔDBC có
BM là đường cao ứng với cạnh DC
CH là đường cao ứng với cạnh BD
BM cắt CH tại I
Do đó: I là trực tâm của ΔDCB
Suy ra: DI\(\perp\)BC
1: Xét ΔBAM và ΔBNM có
BA=BN
góc ABM=goc NBM
BM chung
Do đó: ΔBAM=ΔBNM
2: ΔBAM=ΔBNM
=>MA=MN
mà BA=BN
nên BM là trung trực của AN
=>I là trung điểm của AN
3: góc ABC+góc C=90 độ
góc NMC+góc C=90 độ
=>góc ABC=góc NMC
a) Xét \(\Delta\)AHB và \(\Delta\)DHB có:
^AHB = ^DHB ( 1v )
HA = HD ( giả thiết )
MH chung
=> \(\Delta\)AHB = \(\Delta\)DHB ( c.g.c)
b) Từ (a) => ^ABH = ^DHB => BH là phân giác ^ABD
Vì \(\Delta\)ABC nhọn => H nằm trong đoạn BC
=> BC là phân giác ^ABD
c) NF vuông BC
AH vuông BC
=> NF // AH
=> ^NFM = ^HAM ( So le trong )
Lại có: ^HMA = NMF ( đối đỉnh ) và MA = MF ( giả thiết )
=> \(\Delta\)NFM = \(\Delta\)HAM ( g.c.g)
=> NF = AH ( 2)
Từ ( a) => AH = HD ( 3)
Từ (2) ; (3) => NF = HD
a) Xét ΔAMB và ΔDMC có
MA=MD(gt)
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)
Do đó: ΔAMB=ΔDMC(c-g-c)