Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Nguyễn TrươngNguyenNguyễn Việt LâmÁnh LêAkai HarumaDƯƠNG PHAN KHÁNH DƯƠNGPhùng Tuệ Minh
A B C H
+) Áp dụng đinh lí Py - ta - go với tam giác ABC ta có: \(\sqrt{AB^2+AC^2}=BC\)
\(\Rightarrow BC=\sqrt{18^2+24^2}=30\left(cm\right)\)
+) Diện tích tam giác ABC là: SABC = AH . BC : 2 = AB . AC : 2 = 18 . 24 : 2 = 216 (cm2)
\(\Rightarrow\) AH . BC = 432
\(\Rightarrow\) AH . 30 = 432
\(\Rightarrow\) AH = 14,4 (cm)
+) Áp dụng đinh lí Py - ta - go với tam giác AHB ta có:
\(BH^2+AH^2=AB^2\)
\(\Rightarrow BH=\sqrt{AB^2-AH^2}\)
\(\Rightarrow BH=\sqrt{18^2-14,4^2}=10,8\)
+) Ta có: AB2 = 182 = 324, BH . BC = 10,8 . 30 = 324. Vậy ta có đpcm
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔBAC vuông tại A có AH là đường cao
nên BA^2=BH*BC
b: BC=căn 18^2+24^2=30cm
CD là phân giác
=>DA/AC=DB/BC
=>DA/4=DB/5=(DA+DB)/(4+5)=18/9=2
=>DA=8cm
![](https://rs.olm.vn/images/avt/0.png?1311)
a: BD/AD=BC/AC=5/4
b: Xét ΔHBA và ΔABC có
góc BHA=góc BAC
góc B chung
=>ΔHBA đồng dạng với ΔABC
c: Xét ΔDAC và ΔDKB có
góc DAC=góc DKB
góc ADC=góc KDB
=>ΔDAC đồng dạng với ΔDKB
=>DA/DK=DC/DB
=>DA*DB=DK*DC
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 6 :
Tự vẽ hình nhá :)
a) Gọi O là giao điểm của AC và EF
Xét tam giác ADC có :
EO // DC => AE/AD = AO/AC (1)
Xét tam giác ABC có :
OF // DC
=> CF/CB = CO/CA (2)
Từ (1) và (2) => AE/AD + CF/CB = AO/AC + CO/CA = AO + CO/AC = AC/AC = 1 => đpcm
Bài 7 :
A B C D G K M F E
a) Do EF // AB => CF / CA = EF / AB => CF / EF = AC / AB (1)
Dựng MG // AC và M là trung điểm của cạnh BC => GM là đường trung bình của tam giác ABC => G là trung điểm của cạnh AB =>AG = BG
Do DK // GM => AD / AG = DK / GM => AD / BG = DK / GM
=> DK / AD = GM / BG = \(\frac{\frac{AC}{2}}{\frac{AB}{2}}=\frac{AC}{AB} \left(2\right)\)
Từ (1) và (2) => CF / EF = DK / AD
Mà tứ giác ADEF là hình bình hành ( vì EF // AD và DE // AF ) nên AD = È
=> CF = DK ( đpcm )
Bài 8 :
A B C M N 38 11 8
Ta có : AB = AM + MB = 11 + 8 = 19 ( cm )
Áp dụng hệ quả định lí Ta-lét vào tam giác ABC, ta có :
AM / AB = AN / AC => AM + AB / AB = AN + AC / AC => 19 + 11 / 19 = AN + 38 / 38 => 30/19 = 38 + AN / 38
=> 1140 = 19.AN + 722
=> AN = ( 1140 - 722 ) / 19 = 22 ( cm )
=> NC = 38 - 12 = 26 ( cm )